Understanding Folding of bFGF and Potential Cellular Protective Mechanisms of Neural Cells

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2025-01-03 DOI:10.1021/acs.biochem.4c0029710.1021/acs.biochem.4c00297
Robert J. Allsopp,  and , Jeffery B. Klauda*, 
{"title":"Understanding Folding of bFGF and Potential Cellular Protective Mechanisms of Neural Cells","authors":"Robert J. Allsopp,&nbsp; and ,&nbsp;Jeffery B. Klauda*,&nbsp;","doi":"10.1021/acs.biochem.4c0029710.1021/acs.biochem.4c00297","DOIUrl":null,"url":null,"abstract":"<p >Traumatic brain injury (TBI) is a serious health condition that affects an increasing number of people, especially veterans and athletes. TBI causes serious consequences because of its long-lasting impact on the brain and its alarming frequency of occurrence. Although the brain has some natural protective mechanisms, the processes that trigger them are poorly understood. Fibroblast growth factor (FGF) proteins interact with receptor proteins to protect cells. Gaps in the literature include how basic-FGF (bFGF) is activated by heparin, can heparin-like molecules induce neural protection, and the effect of allosteric binding on bFGF activity. To fill the gap in our understanding, we applied temperature replica exchange to study the influence of heparin binding to bFGF and how mutations in bFGF influence stability. A new favorable binding site was identified by comparing free energies computed from the potential of mean force (PMF). Although the varied sugars studied resulted in different interactions with bFGF compared to heparin, they each produced structural effects similar to those of bFGF that likely facilitate receptor binding and signaling. Our results also demonstrate how point mutations can trigger the same conformational change that is believed to promote favorable interactions with the receptor. A deeper atomic-level understanding of how chemicals are released during TBI is needed to improve the development of new treatments for TBI and could contribute to a better understanding of other diseases.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":"64 2","pages":"509–524 509–524"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00297","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traumatic brain injury (TBI) is a serious health condition that affects an increasing number of people, especially veterans and athletes. TBI causes serious consequences because of its long-lasting impact on the brain and its alarming frequency of occurrence. Although the brain has some natural protective mechanisms, the processes that trigger them are poorly understood. Fibroblast growth factor (FGF) proteins interact with receptor proteins to protect cells. Gaps in the literature include how basic-FGF (bFGF) is activated by heparin, can heparin-like molecules induce neural protection, and the effect of allosteric binding on bFGF activity. To fill the gap in our understanding, we applied temperature replica exchange to study the influence of heparin binding to bFGF and how mutations in bFGF influence stability. A new favorable binding site was identified by comparing free energies computed from the potential of mean force (PMF). Although the varied sugars studied resulted in different interactions with bFGF compared to heparin, they each produced structural effects similar to those of bFGF that likely facilitate receptor binding and signaling. Our results also demonstrate how point mutations can trigger the same conformational change that is believed to promote favorable interactions with the receptor. A deeper atomic-level understanding of how chemicals are released during TBI is needed to improve the development of new treatments for TBI and could contribute to a better understanding of other diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Pre-Steady-State Kinetic Studies of Nucleotide Incorporation into a Single-Nucleotide Gapped DNA Substrate Catalyzed by Human DNA Polymerase β. Pathway Specific Unbinding Free Energy Profiles of Ritonavir Dissociation from HIV-1 Protease. Conversion of Inactive Non-Pro1 Tautomerase Superfamily Members into Active Tautomerases: Analysis of the Pro1 Mutants. A Cascade of Conformational Switches in SARS-CoV-2 Frameshifting: Coregulation by Upstream and Downstream Elements. Frataxin Traps Low Abundance Quaternary Structure to Stimulate Human Fe-S Cluster Biosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1