Fault-Tolerance Study on a Positive-Charged Cleft in 18S rRNA Methyltransferase DIMT1

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2025-01-06 DOI:10.1021/acs.biochem.4c0031910.1021/acs.biochem.4c00319
Xiaoyu Wei, Nora Sampson, Sarai Maria Figueroa Mendoza, Yulia Gonskikh* and Kathy Fange Liu*, 
{"title":"Fault-Tolerance Study on a Positive-Charged Cleft in 18S rRNA Methyltransferase DIMT1","authors":"Xiaoyu Wei,&nbsp;Nora Sampson,&nbsp;Sarai Maria Figueroa Mendoza,&nbsp;Yulia Gonskikh* and Kathy Fange Liu*,&nbsp;","doi":"10.1021/acs.biochem.4c0031910.1021/acs.biochem.4c00319","DOIUrl":null,"url":null,"abstract":"<p >Dimethyladenosine transferase 1 (DIMT1) is an RNA <i>N</i><sup>6,6</sup>-dimethyladenosine (m<sub>2</sub><sup>6,6</sup>A) methyltransferase. DIMT1’s role in pre-rRNA processing and ribosome biogenesis is critical for cell proliferation. Here, we investigated the minimal number of residues in a positively charged cleft on DIMT1 required for cell proliferation. We demonstrate that a minimum of four residues in the positively charged cleft must be mutated to alter DIMT1’s RNA-binding ability. The variant (4mutA-DIMT1), which presents reduced RNA binding affinity, is diffuse in the nucleoplasm and nucleolus, in contrast with the primarily nucleolar localization of wild-type DIMT1. The aberrant cellular localization significantly impaired 4mutA-DIMT1’s role in supporting cell proliferation, as shown in competition-based cell proliferation assays. These results identify the minimum region in DIMT1 to target for cell proliferation regulation.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":"64 2","pages":"525–532 525–532"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00319","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dimethyladenosine transferase 1 (DIMT1) is an RNA N6,6-dimethyladenosine (m26,6A) methyltransferase. DIMT1’s role in pre-rRNA processing and ribosome biogenesis is critical for cell proliferation. Here, we investigated the minimal number of residues in a positively charged cleft on DIMT1 required for cell proliferation. We demonstrate that a minimum of four residues in the positively charged cleft must be mutated to alter DIMT1’s RNA-binding ability. The variant (4mutA-DIMT1), which presents reduced RNA binding affinity, is diffuse in the nucleoplasm and nucleolus, in contrast with the primarily nucleolar localization of wild-type DIMT1. The aberrant cellular localization significantly impaired 4mutA-DIMT1’s role in supporting cell proliferation, as shown in competition-based cell proliferation assays. These results identify the minimum region in DIMT1 to target for cell proliferation regulation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Pre-Steady-State Kinetic Studies of Nucleotide Incorporation into a Single-Nucleotide Gapped DNA Substrate Catalyzed by Human DNA Polymerase β. Pathway Specific Unbinding Free Energy Profiles of Ritonavir Dissociation from HIV-1 Protease. Conversion of Inactive Non-Pro1 Tautomerase Superfamily Members into Active Tautomerases: Analysis of the Pro1 Mutants. A Cascade of Conformational Switches in SARS-CoV-2 Frameshifting: Coregulation by Upstream and Downstream Elements. Frataxin Traps Low Abundance Quaternary Structure to Stimulate Human Fe-S Cluster Biosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1