Trace element composition and significance of quartz and stibnite in the Woxi Au - Sb - W deposit, Hunan

Jiankang Zhang, Yulong Yang, Qiang Wang, Huimin Zhang, Feilin Zhu
{"title":"Trace element composition and significance of quartz and stibnite in the Woxi Au - Sb - W deposit, Hunan","authors":"Jiankang Zhang,&nbsp;Yulong Yang,&nbsp;Qiang Wang,&nbsp;Huimin Zhang,&nbsp;Feilin Zhu","doi":"10.1016/j.oreoa.2024.100082","DOIUrl":null,"url":null,"abstract":"<div><div>We present new mineralogical and chemical data on quartz and stibnite from the Woxi Au-Sb-W deposit in western Hunan. The aim is to elucidate the substitution mechanisms of trace elements and to estimate the ore-forming temperatures within the Woxi deposit. Furthermore, we explore the potential of using trace element compositions in quartz to differentiate between various types of mineral deposits. Based on field investigation and petrographic observation, the mineralization process of the Woxi deposit can be divided into three distinct stages: an early quartz-scheelite stage, a main quartz-sulfide-native gold stage, and a late quartz-carbonate stage. LA-ICP-MS analysis of quartz from different mineralization stages reveals distinct substitution mechanisms for trace elements. In the early-stage quartz, the primary substitution mechanism is (Al³⁺, As³⁺) + (Li⁺, Na⁺) → Si⁴⁺. In the main stage, the substitution mechanism is 2(Sb³⁺, As³⁺) + (Ba²⁺) → 2Si⁴⁺. For the late-stage quartz, the substitution follows the pattern 2(As³⁺, Sb³⁺) + (Ba²⁺, Sr²⁺) → 2Si⁴⁺. Stibnite occurs exclusively during the second stage, with Cu and Pb enrichment in stibnite facilitated by the substitution mechanism of Cu²⁺ + Pb²⁺ → Sb³⁺. The incorporation of As into stibnite is attributed to a substitution equation of Sb³⁺ ↔ As³⁺. Quartz crystallization temperatures inferred from Ti thermometry suggest that quartz crystallization temperatures across different stages to be relatively similar. The temperature obtained through the titanium-in-quartz thermometer likely reflects the crystallization temperature of quartz. Since quartz crystallizes at relatively higher temperatures, the calculated temperature is higher than that indicated by fluid inclusion thermometry. Additionally, by compiling geochemical data from nine different types of Au, Sb, and W deposits and conducting plotting analysis, it was observed that orogenic deposits exhibit relatively balanced Ti, Al, and Ge concentrations, with a relative enrichment of Ge. Epithermal deposits show higher Ti concentrations but lower Al and Ge, with most data points concentrated in the high Ti range. In contrast, porphyry deposits are characterized by higher Al content and lower Ti and Ge. The ternary discrimination diagram of Ti, Al, and Ge effectively distinguishes the quartz characteristics of orogenic, epithermal, and porphyry-type deposits.</div></div>","PeriodicalId":100993,"journal":{"name":"Ore and Energy Resource Geology","volume":"18 ","pages":"Article 100082"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore and Energy Resource Geology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666261224000440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present new mineralogical and chemical data on quartz and stibnite from the Woxi Au-Sb-W deposit in western Hunan. The aim is to elucidate the substitution mechanisms of trace elements and to estimate the ore-forming temperatures within the Woxi deposit. Furthermore, we explore the potential of using trace element compositions in quartz to differentiate between various types of mineral deposits. Based on field investigation and petrographic observation, the mineralization process of the Woxi deposit can be divided into three distinct stages: an early quartz-scheelite stage, a main quartz-sulfide-native gold stage, and a late quartz-carbonate stage. LA-ICP-MS analysis of quartz from different mineralization stages reveals distinct substitution mechanisms for trace elements. In the early-stage quartz, the primary substitution mechanism is (Al³⁺, As³⁺) + (Li⁺, Na⁺) → Si⁴⁺. In the main stage, the substitution mechanism is 2(Sb³⁺, As³⁺) + (Ba²⁺) → 2Si⁴⁺. For the late-stage quartz, the substitution follows the pattern 2(As³⁺, Sb³⁺) + (Ba²⁺, Sr²⁺) → 2Si⁴⁺. Stibnite occurs exclusively during the second stage, with Cu and Pb enrichment in stibnite facilitated by the substitution mechanism of Cu²⁺ + Pb²⁺ → Sb³⁺. The incorporation of As into stibnite is attributed to a substitution equation of Sb³⁺ ↔ As³⁺. Quartz crystallization temperatures inferred from Ti thermometry suggest that quartz crystallization temperatures across different stages to be relatively similar. The temperature obtained through the titanium-in-quartz thermometer likely reflects the crystallization temperature of quartz. Since quartz crystallizes at relatively higher temperatures, the calculated temperature is higher than that indicated by fluid inclusion thermometry. Additionally, by compiling geochemical data from nine different types of Au, Sb, and W deposits and conducting plotting analysis, it was observed that orogenic deposits exhibit relatively balanced Ti, Al, and Ge concentrations, with a relative enrichment of Ge. Epithermal deposits show higher Ti concentrations but lower Al and Ge, with most data points concentrated in the high Ti range. In contrast, porphyry deposits are characterized by higher Al content and lower Ti and Ge. The ternary discrimination diagram of Ti, Al, and Ge effectively distinguishes the quartz characteristics of orogenic, epithermal, and porphyry-type deposits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral inversion of rare earth element concentration based on SPA-PLSR model The Yalguaraz prospect: a porphyry copper-type deposit related to the gondwanic magmatism in the Andes of Argentina Optimization and identification of key process parameters for in-situ leaching of uranium in the Barun uranium deposit, China Source rock appraisal of Taqrifat Shale-Mallegh formation and the origin of crude oils of Cyrenaica region, NE Libya Trace element composition and significance of quartz and stibnite in the Woxi Au - Sb - W deposit, Hunan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1