Radhakrishnan Vishnubalaji , Dania Awata , Nehad M. Alajez
{"title":"LURAP1L-AS1 long noncoding RNA promotes breast cancer progression and associates with poor prognosis","authors":"Radhakrishnan Vishnubalaji , Dania Awata , Nehad M. Alajez","doi":"10.1016/j.ncrna.2025.01.006","DOIUrl":null,"url":null,"abstract":"<div><div>Long noncoding RNAs (lncRNAs) are emerging as critical regulators of cancer biology, yet their roles in breast cancer, particularly in triple-negative breast cancer (TNBC), remain incompletely understood. Through a custom siRNA library screen targeting TNBC-associated lncRNAs in MDA-MB-231 and BT-549 TNBC cell models, we identified LURAP1L-AS1 as a key modulator of TNBC progression. Survival analysis of TNBC patients demonstrated a significant association between elevated LURAP1L-AS1 expression and poor clinical outcomes.</div><div>LURAP1L-AS1 knockdown significantly impaired colony formation and organoid growth of TNBC models, associated with increased apoptosis thus highlighting its role in promoting tumorigenicity. RNA sequencing of LURAP1L-AS1-depleted cells revealed dysregulation of pathways related to cell proliferation, apoptosis, migration, and RNA processing. Bioinformatics analysis predicted LURAP1L-AS1 to function as a competitive endogenous RNA (ceRNA), sponging key microRNAs, such as miR-7a-5p, miR-101-3p, miR-181a-5p, and miR-27a-3p, thereby modulating oncogenes including EZH2, MCL1, and KRAS, which are linked to increased cancer cell survival, proliferation, and metastasis.</div><div>In addition to its role in TNBC, correlation analysis using breast cancer patient datasets revealed a significant association between LURAP1L-AS1 and ESR1 expression, suggesting its broader impact across breast cancer subtypes. Concordantly, LURAP1L-AS1 depletion inhibited estrogen receptor-positive (ER+) MCF7 breast cancer cells colony formation and organotypic growth.</div><div>Our findings establish LURAP1L-AS1 as a functional lncRNA that promotes breast cancer progression, highlighting its potential for use in RNA-based therapies for breast cancer.</div></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"12 ","pages":"Pages 1-9"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-coding RNA Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468054025000186","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Long noncoding RNAs (lncRNAs) are emerging as critical regulators of cancer biology, yet their roles in breast cancer, particularly in triple-negative breast cancer (TNBC), remain incompletely understood. Through a custom siRNA library screen targeting TNBC-associated lncRNAs in MDA-MB-231 and BT-549 TNBC cell models, we identified LURAP1L-AS1 as a key modulator of TNBC progression. Survival analysis of TNBC patients demonstrated a significant association between elevated LURAP1L-AS1 expression and poor clinical outcomes.
LURAP1L-AS1 knockdown significantly impaired colony formation and organoid growth of TNBC models, associated with increased apoptosis thus highlighting its role in promoting tumorigenicity. RNA sequencing of LURAP1L-AS1-depleted cells revealed dysregulation of pathways related to cell proliferation, apoptosis, migration, and RNA processing. Bioinformatics analysis predicted LURAP1L-AS1 to function as a competitive endogenous RNA (ceRNA), sponging key microRNAs, such as miR-7a-5p, miR-101-3p, miR-181a-5p, and miR-27a-3p, thereby modulating oncogenes including EZH2, MCL1, and KRAS, which are linked to increased cancer cell survival, proliferation, and metastasis.
In addition to its role in TNBC, correlation analysis using breast cancer patient datasets revealed a significant association between LURAP1L-AS1 and ESR1 expression, suggesting its broader impact across breast cancer subtypes. Concordantly, LURAP1L-AS1 depletion inhibited estrogen receptor-positive (ER+) MCF7 breast cancer cells colony formation and organotypic growth.
Our findings establish LURAP1L-AS1 as a functional lncRNA that promotes breast cancer progression, highlighting its potential for use in RNA-based therapies for breast cancer.
期刊介绍:
Non-coding RNA Research aims to publish high quality research and review articles on the mechanistic role of non-coding RNAs in all human diseases. This interdisciplinary journal will welcome research dealing with all aspects of non-coding RNAs-their biogenesis, regulation and role in disease progression. The focus of this journal will be to publish translational studies as well as well-designed basic studies with translational and clinical implications. The non-coding RNAs of particular interest will be microRNAs (miRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), U-RNAs/small nuclear RNAs (snRNAs), exosomal/extracellular RNAs (exRNAs), Piwi-interacting RNAs (piRNAs) and long non-coding RNAs. Topics of interest will include, but not limited to: -Regulation of non-coding RNAs -Targets and regulatory functions of non-coding RNAs -Epigenetics and non-coding RNAs -Biological functions of non-coding RNAs -Non-coding RNAs as biomarkers -Non-coding RNA-based therapeutics -Prognostic value of non-coding RNAs -Pharmacological studies involving non-coding RNAs -Population based and epidemiological studies -Gene expression / proteomics / computational / pathway analysis-based studies on non-coding RNAs with functional validation -Novel strategies to manipulate non-coding RNAs expression and function -Clinical studies on evaluation of non-coding RNAs The journal will strive to disseminate cutting edge research, showcasing the ever-evolving importance of non-coding RNAs in modern day research and medicine.