Abazar M.A. Daoud , Ali Shebl , Mohamed M. Abdelkader , Ali Ahmed Mohieldain , Árpád Csámer , Albarra M.N. Satti , Péter Rózsa
{"title":"Remote sensing and gravity investigations for barite detection in Neoproterozoic rocks in the Ariab area, Red Sea Hills, Sudan","authors":"Abazar M.A. Daoud , Ali Shebl , Mohamed M. Abdelkader , Ali Ahmed Mohieldain , Árpád Csámer , Albarra M.N. Satti , Péter Rózsa","doi":"10.1016/j.rsase.2024.101416","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing global demand for barite, driven by its geological importance and various industrial applications, advises the scientific community to improve attempts to identify and explore its deposits in different geological settings. This boost in interest aims to ensure sustainable supply by locating new sources and better understanding the conditions in which barite forms. This study presents an integrated approach using multispectral (Landsat 8 & 9, Sentinel-2, and ASTER) and hyperspectral (PRISMA) remote sensing data, along with geophysical gravity data, to improve the localization of barite deposits. Several image processing methods, including false colour composites, principal component analysis, band ratios, minimum noise fraction, and spectral analysis, were employed for the discrimination of barite deposits, revealing their association with felsic rocks (referred to as group C). Additionally, lineament extraction was performed using the recent and advanced different filters like Tilt Angle Horizontal Gradient (TAHG) and Enhanced Horizontal Gradient Amplitude (EHGA) on Bouguer anomalies, highlighting the structural control of barite deposits by the D3 deformation phase. Field investigations were conducted to validate our findings. Based on these field observations, the integrated methodology successfully mapped the distribution of barite and its host rocks, resulting in an updated geological map for barite distribution that can be used in further exploration phases. We strongly recommend the adopted approach and the newly proposed image combinations for preliminary explorations of barite in similar arid terrains.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101416"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing global demand for barite, driven by its geological importance and various industrial applications, advises the scientific community to improve attempts to identify and explore its deposits in different geological settings. This boost in interest aims to ensure sustainable supply by locating new sources and better understanding the conditions in which barite forms. This study presents an integrated approach using multispectral (Landsat 8 & 9, Sentinel-2, and ASTER) and hyperspectral (PRISMA) remote sensing data, along with geophysical gravity data, to improve the localization of barite deposits. Several image processing methods, including false colour composites, principal component analysis, band ratios, minimum noise fraction, and spectral analysis, were employed for the discrimination of barite deposits, revealing their association with felsic rocks (referred to as group C). Additionally, lineament extraction was performed using the recent and advanced different filters like Tilt Angle Horizontal Gradient (TAHG) and Enhanced Horizontal Gradient Amplitude (EHGA) on Bouguer anomalies, highlighting the structural control of barite deposits by the D3 deformation phase. Field investigations were conducted to validate our findings. Based on these field observations, the integrated methodology successfully mapped the distribution of barite and its host rocks, resulting in an updated geological map for barite distribution that can be used in further exploration phases. We strongly recommend the adopted approach and the newly proposed image combinations for preliminary explorations of barite in similar arid terrains.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems