Aishwarya Hegde A. , Pruthviraj Umesh , Mohit P. Tahiliani
{"title":"Automated rice mapping using multitemporal Sentinel-1 SAR imagery using dynamic threshold and slope-based index methods","authors":"Aishwarya Hegde A. , Pruthviraj Umesh , Mohit P. Tahiliani","doi":"10.1016/j.rsase.2024.101410","DOIUrl":null,"url":null,"abstract":"<div><div>Rice cultivation plays a crucial role in food security and economic development, particularly in regions like India, due to its vast population and position as the top rice producer globally. This work introduces a novel framework, the Rice Mapping Method (RMM), which leverages Multitemporal Sentinel-1 Synthetic Aperture Radar (SAR) imagery for automated rice mapping. Contrary to the traditional approaches, RMM combines the Dynamic Threshold Method (DTM) for robust rice field identification and a slope-based index for classifying single and double cropping practices. By analyzing VH backscatter patterns and employing specific thresholds, DTM separates rice pixels from the other background pixels. The DTM, which relies on VH backscatter values during the growing season, has been tested across various rice cultivation landscapes, demonstrating high accuracy up to 0.95. DTM is also tested on different rice-growing areas such as the hilly Kodagu district, with an F1 Score of 0.96, and in the flooded delta region of Kuttanad, achieving an F1 Score of 0.93. The Slope-based Index <span><math><msub><mrow><mi>I</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></mrow></msub></math></span> is introduced to differentiate the single and double cropping pixels by calculating the index for the second season of cropping and gives F1 Score of 0.81. The DTM’s effectiveness in rice field identification is evaluated by comparing it to the classification of the Bi-directional Gated Recurrent Unit (Bi-GRU) network. Similarly, the Slope-based Index is compared with other established automated rice mapping methods to assess its accuracy in distinguishing cropping patterns. RMM was successfully applied in mapping rice-growing areas in the Udupi district for 2021, estimating Kharif and Rabi season areas, the estimated rice area is compared to official statistics by the Directorate of Economics and Statistics, Karnataka State. The proposed RMM approach offers a robust solution for mapping rice fields, particularly in regions with complex cropping landscapes, and enhances agricultural monitoring and decision-making processes contributing to sustainable rice production and food security initiatives.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101410"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235293852400274X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rice cultivation plays a crucial role in food security and economic development, particularly in regions like India, due to its vast population and position as the top rice producer globally. This work introduces a novel framework, the Rice Mapping Method (RMM), which leverages Multitemporal Sentinel-1 Synthetic Aperture Radar (SAR) imagery for automated rice mapping. Contrary to the traditional approaches, RMM combines the Dynamic Threshold Method (DTM) for robust rice field identification and a slope-based index for classifying single and double cropping practices. By analyzing VH backscatter patterns and employing specific thresholds, DTM separates rice pixels from the other background pixels. The DTM, which relies on VH backscatter values during the growing season, has been tested across various rice cultivation landscapes, demonstrating high accuracy up to 0.95. DTM is also tested on different rice-growing areas such as the hilly Kodagu district, with an F1 Score of 0.96, and in the flooded delta region of Kuttanad, achieving an F1 Score of 0.93. The Slope-based Index is introduced to differentiate the single and double cropping pixels by calculating the index for the second season of cropping and gives F1 Score of 0.81. The DTM’s effectiveness in rice field identification is evaluated by comparing it to the classification of the Bi-directional Gated Recurrent Unit (Bi-GRU) network. Similarly, the Slope-based Index is compared with other established automated rice mapping methods to assess its accuracy in distinguishing cropping patterns. RMM was successfully applied in mapping rice-growing areas in the Udupi district for 2021, estimating Kharif and Rabi season areas, the estimated rice area is compared to official statistics by the Directorate of Economics and Statistics, Karnataka State. The proposed RMM approach offers a robust solution for mapping rice fields, particularly in regions with complex cropping landscapes, and enhances agricultural monitoring and decision-making processes contributing to sustainable rice production and food security initiatives.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems