Zainab Khan , Sk Ajim Ali , Ateeque Ahmad , Syed Kausar Shamim
{"title":"Temporal trends and future projections: Analysing land surface temperature in the Kumaun Himalayas using spatial time series analysis","authors":"Zainab Khan , Sk Ajim Ali , Ateeque Ahmad , Syed Kausar Shamim","doi":"10.1016/j.rsase.2024.101426","DOIUrl":null,"url":null,"abstract":"<div><div>In this ground-breaking study, we introduced a novel approach for projecting Land Surface Temperature (LST) in the Kumaun Himalayas, an area critical for understanding regional impacts of global warming. The novelty of this study lies in the utilization of spatial time series analysis, a method that not previously applied for future LST prediction. In this study we examined LST trends from 1990 to 2020 and predicted LST for the year 2030 using satellite-based remote sensing data for LST estimation, advanced statistical techniques such as the Simple Moving Average (SMA), Sen's Slope, and z-statistics with excellent statistical power. The application of z-statistics provides a robust framework for assessing temperature changes, with significant findings such as a z-statistics value of −15.04 for spring, indicating a marked shift in temperature patterns. Similarly, for autumn, the z-statistics value of −21.41 underscores a drastic deviation from historical norms i.e., from 1990 to 2020. Pearson's correlation and the coefficient of determination were used to validate the accuracy of satellite-based LST estimates and SMA. A correlation of 0.93 and R<sup>2</sup> of 0.87 were found between observed and estimated LSTs, while the SMA-based LST showed a correlation of 0.92 with estimated LST with R<sup>2</sup> of 0.85. The results highlight a future that is significantly warmer than the present, bringing into sharp focus the urgency of climate change mitigation and adaptation strategies in this ecologically sensitive region. The study also suggested differential rate of seasonal warming. The study is not only pivotal for local climate policy but also contribute significantly to the broader understanding of climate dynamics in mountainous terrains is seasonal variation in warming rates. Despite challenges like rugged terrain and variable cloud cover affecting data accuracy, our approach offered a scalable model for similar climatic studies in other regions, marking a significant advancement in the field of climate change.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101426"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this ground-breaking study, we introduced a novel approach for projecting Land Surface Temperature (LST) in the Kumaun Himalayas, an area critical for understanding regional impacts of global warming. The novelty of this study lies in the utilization of spatial time series analysis, a method that not previously applied for future LST prediction. In this study we examined LST trends from 1990 to 2020 and predicted LST for the year 2030 using satellite-based remote sensing data for LST estimation, advanced statistical techniques such as the Simple Moving Average (SMA), Sen's Slope, and z-statistics with excellent statistical power. The application of z-statistics provides a robust framework for assessing temperature changes, with significant findings such as a z-statistics value of −15.04 for spring, indicating a marked shift in temperature patterns. Similarly, for autumn, the z-statistics value of −21.41 underscores a drastic deviation from historical norms i.e., from 1990 to 2020. Pearson's correlation and the coefficient of determination were used to validate the accuracy of satellite-based LST estimates and SMA. A correlation of 0.93 and R2 of 0.87 were found between observed and estimated LSTs, while the SMA-based LST showed a correlation of 0.92 with estimated LST with R2 of 0.85. The results highlight a future that is significantly warmer than the present, bringing into sharp focus the urgency of climate change mitigation and adaptation strategies in this ecologically sensitive region. The study also suggested differential rate of seasonal warming. The study is not only pivotal for local climate policy but also contribute significantly to the broader understanding of climate dynamics in mountainous terrains is seasonal variation in warming rates. Despite challenges like rugged terrain and variable cloud cover affecting data accuracy, our approach offered a scalable model for similar climatic studies in other regions, marking a significant advancement in the field of climate change.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems