Fatemeh Parto Dezfooli , Mohammad Javad Valadan Zoej , Ali Mansourian , Fahimeh Youssefi , Saied Pirasteh
{"title":"GEE-based environmental monitoring and phenology correlation investigation using Support Vector Regression","authors":"Fatemeh Parto Dezfooli , Mohammad Javad Valadan Zoej , Ali Mansourian , Fahimeh Youssefi , Saied Pirasteh","doi":"10.1016/j.rsase.2024.101445","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental changes over time and across different regions profoundly affect agriculture, forestry, water management, public health, and ecosystems. Therefore, monitoring these fluctuations is crucial for informing decision-making and developing strategies for long-term sustainability. While ground-based methods provide valuable insights into environmental dynamics, they are inherently limited in scope and coverage. Consequently, satellite-based techniques have become essential for comprehensive ecological monitoring over extensive spatial and temporal scales. This study investigates spatio-temporal patterns of environmental factors and their correlation with phenology in Ilam Province, Iran, from 2014 to 2021, utilizing remote sensing data and Google Earth Engine (GEE). Landsat 8 satellite data was used to generate time series maps and timelines for land cover, temperature, and soil moisture, using the Soil-Adjusted Vegetation Index (SAVI), Land Surface Temperature (LST) anomaly, and Soil Moisture Index (SMI). Subsequently, the Temporal Soil-Adjusted Vegetation Phenology Index (TSPI) was calculated to track annual vegetation variations and analyze its correlation with the specified parameters using Support Vector Regression (SVR). Our results revealed significant trends in environmental factors, highlighting robust correlations with the TSPI. Soil moisture peaked in late winter and early spring, declining during the summer, with the highest levels recorded in 2018. Vegetation reached its maximum density in mid-spring and its minimum in winter, with a notable greening surge observed in 2019. Temperatures were highest in summer and lowest in winter, showing minimal year-to-year variation. Spatial analysis indicated a consistent increase in land surface temperature from the northeast toward the southwest, corresponding to declines in vegetation and soil moisture levels. Regression analysis specified strong associations between the TSPI and environmental variables, with R-squared values of 0.83 for LST, 0.86 for SAVI, and 0.79 for SMI. These findings emphasize the effectiveness of remote sensing methods, such as time series satellite imagery and streamlined indices, for large-scale ecological analyses using the GEE platform and underscore the potential of TSPI as a proper indicator for future environmental management research.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101445"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524003094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental changes over time and across different regions profoundly affect agriculture, forestry, water management, public health, and ecosystems. Therefore, monitoring these fluctuations is crucial for informing decision-making and developing strategies for long-term sustainability. While ground-based methods provide valuable insights into environmental dynamics, they are inherently limited in scope and coverage. Consequently, satellite-based techniques have become essential for comprehensive ecological monitoring over extensive spatial and temporal scales. This study investigates spatio-temporal patterns of environmental factors and their correlation with phenology in Ilam Province, Iran, from 2014 to 2021, utilizing remote sensing data and Google Earth Engine (GEE). Landsat 8 satellite data was used to generate time series maps and timelines for land cover, temperature, and soil moisture, using the Soil-Adjusted Vegetation Index (SAVI), Land Surface Temperature (LST) anomaly, and Soil Moisture Index (SMI). Subsequently, the Temporal Soil-Adjusted Vegetation Phenology Index (TSPI) was calculated to track annual vegetation variations and analyze its correlation with the specified parameters using Support Vector Regression (SVR). Our results revealed significant trends in environmental factors, highlighting robust correlations with the TSPI. Soil moisture peaked in late winter and early spring, declining during the summer, with the highest levels recorded in 2018. Vegetation reached its maximum density in mid-spring and its minimum in winter, with a notable greening surge observed in 2019. Temperatures were highest in summer and lowest in winter, showing minimal year-to-year variation. Spatial analysis indicated a consistent increase in land surface temperature from the northeast toward the southwest, corresponding to declines in vegetation and soil moisture levels. Regression analysis specified strong associations between the TSPI and environmental variables, with R-squared values of 0.83 for LST, 0.86 for SAVI, and 0.79 for SMI. These findings emphasize the effectiveness of remote sensing methods, such as time series satellite imagery and streamlined indices, for large-scale ecological analyses using the GEE platform and underscore the potential of TSPI as a proper indicator for future environmental management research.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems