GEE-based environmental monitoring and phenology correlation investigation using Support Vector Regression

IF 3.8 Q2 ENVIRONMENTAL SCIENCES Remote Sensing Applications-Society and Environment Pub Date : 2025-01-01 DOI:10.1016/j.rsase.2024.101445
Fatemeh Parto Dezfooli , Mohammad Javad Valadan Zoej , Ali Mansourian , Fahimeh Youssefi , Saied Pirasteh
{"title":"GEE-based environmental monitoring and phenology correlation investigation using Support Vector Regression","authors":"Fatemeh Parto Dezfooli ,&nbsp;Mohammad Javad Valadan Zoej ,&nbsp;Ali Mansourian ,&nbsp;Fahimeh Youssefi ,&nbsp;Saied Pirasteh","doi":"10.1016/j.rsase.2024.101445","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental changes over time and across different regions profoundly affect agriculture, forestry, water management, public health, and ecosystems. Therefore, monitoring these fluctuations is crucial for informing decision-making and developing strategies for long-term sustainability. While ground-based methods provide valuable insights into environmental dynamics, they are inherently limited in scope and coverage. Consequently, satellite-based techniques have become essential for comprehensive ecological monitoring over extensive spatial and temporal scales. This study investigates spatio-temporal patterns of environmental factors and their correlation with phenology in Ilam Province, Iran, from 2014 to 2021, utilizing remote sensing data and Google Earth Engine (GEE). Landsat 8 satellite data was used to generate time series maps and timelines for land cover, temperature, and soil moisture, using the Soil-Adjusted Vegetation Index (SAVI), Land Surface Temperature (LST) anomaly, and Soil Moisture Index (SMI). Subsequently, the Temporal Soil-Adjusted Vegetation Phenology Index (TSPI) was calculated to track annual vegetation variations and analyze its correlation with the specified parameters using Support Vector Regression (SVR). Our results revealed significant trends in environmental factors, highlighting robust correlations with the TSPI. Soil moisture peaked in late winter and early spring, declining during the summer, with the highest levels recorded in 2018. Vegetation reached its maximum density in mid-spring and its minimum in winter, with a notable greening surge observed in 2019. Temperatures were highest in summer and lowest in winter, showing minimal year-to-year variation. Spatial analysis indicated a consistent increase in land surface temperature from the northeast toward the southwest, corresponding to declines in vegetation and soil moisture levels. Regression analysis specified strong associations between the TSPI and environmental variables, with R-squared values of 0.83 for LST, 0.86 for SAVI, and 0.79 for SMI. These findings emphasize the effectiveness of remote sensing methods, such as time series satellite imagery and streamlined indices, for large-scale ecological analyses using the GEE platform and underscore the potential of TSPI as a proper indicator for future environmental management research.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101445"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524003094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental changes over time and across different regions profoundly affect agriculture, forestry, water management, public health, and ecosystems. Therefore, monitoring these fluctuations is crucial for informing decision-making and developing strategies for long-term sustainability. While ground-based methods provide valuable insights into environmental dynamics, they are inherently limited in scope and coverage. Consequently, satellite-based techniques have become essential for comprehensive ecological monitoring over extensive spatial and temporal scales. This study investigates spatio-temporal patterns of environmental factors and their correlation with phenology in Ilam Province, Iran, from 2014 to 2021, utilizing remote sensing data and Google Earth Engine (GEE). Landsat 8 satellite data was used to generate time series maps and timelines for land cover, temperature, and soil moisture, using the Soil-Adjusted Vegetation Index (SAVI), Land Surface Temperature (LST) anomaly, and Soil Moisture Index (SMI). Subsequently, the Temporal Soil-Adjusted Vegetation Phenology Index (TSPI) was calculated to track annual vegetation variations and analyze its correlation with the specified parameters using Support Vector Regression (SVR). Our results revealed significant trends in environmental factors, highlighting robust correlations with the TSPI. Soil moisture peaked in late winter and early spring, declining during the summer, with the highest levels recorded in 2018. Vegetation reached its maximum density in mid-spring and its minimum in winter, with a notable greening surge observed in 2019. Temperatures were highest in summer and lowest in winter, showing minimal year-to-year variation. Spatial analysis indicated a consistent increase in land surface temperature from the northeast toward the southwest, corresponding to declines in vegetation and soil moisture levels. Regression analysis specified strong associations between the TSPI and environmental variables, with R-squared values of 0.83 for LST, 0.86 for SAVI, and 0.79 for SMI. These findings emphasize the effectiveness of remote sensing methods, such as time series satellite imagery and streamlined indices, for large-scale ecological analyses using the GEE platform and underscore the potential of TSPI as a proper indicator for future environmental management research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
期刊最新文献
Improved radar vegetation water content integration for SMAP soil moisture retrieval Applications, challenges and perspectives for monitoring agricultural dynamics in the Brazilian savanna with multispectral remote sensing Exploring the link between spectra, inherent optical properties in the water column, and sea surface temperature and salinity Pasture monitoring using remote sensing and machine learning: A review of methods and applications Mapping crop water productivity of rice across diverse irrigation and fertilizer rates using field experiment and UAV-based multispectral data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1