Effect of low-density polyethylene on properties of ethylene-vinyl based semi-conductive shielding materials

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composites Science and Technology Pub Date : 2025-01-17 DOI:10.1016/j.compscitech.2025.111046
Jie Lin , Shuai Hou , Zhi-Xing Wang , Yong-Fan Lin , Yuan-Ze Liu , Qiu-Yu Duan , Run-Pan Nie , Ding-Xiang Yan , Li-Chuan Jia , Zhong-Ming Li
{"title":"Effect of low-density polyethylene on properties of ethylene-vinyl based semi-conductive shielding materials","authors":"Jie Lin ,&nbsp;Shuai Hou ,&nbsp;Zhi-Xing Wang ,&nbsp;Yong-Fan Lin ,&nbsp;Yuan-Ze Liu ,&nbsp;Qiu-Yu Duan ,&nbsp;Run-Pan Nie ,&nbsp;Ding-Xiang Yan ,&nbsp;Li-Chuan Jia ,&nbsp;Zhong-Ming Li","doi":"10.1016/j.compscitech.2025.111046","DOIUrl":null,"url":null,"abstract":"<div><div>Ethylene-vinyl acetate copolymer (EVA)-based semi-conductive shielding materials (SCSM) are extensively used in low- and medium-voltage cables. However, the limited thermal stability of EVA prevents its application in high-voltage cables. Herein, low-density polyethylene (LDPE) was introduced to blend with EVA, and carbon black (CB) served as conductive fillers to fabricate the CB/EVA@LDPE composites with enhanced thermal stability for application as high-voltage SCSM. Benefiting from the inter-chain interaction between EVA and LDPE molecular chains and the selective distribution of CB, the CB/EVA@LDPE composites achieve the integration of favorable thermal stability, superior electrical performance and good mechanical properties. Specifically, the resultant composites exhibit a superior initial decomposition temperature (300.1 °C) at 30 phr LDPE compared to the CB/EVA composites (285.6 °C). The tensile strength and elongation at break of the CB/EVA@LDPE composites are 18.6 MPa and 281.2 %, which still maintain a desirable level. Moreover, the incorporation of LDPE also contributes to a favorable volume resistivity of 63.9 Ω cm and low PTC intensity (4.7) based on the unique conductive network in the EVA/LDPE blend system. This work is expected to provide favorable insights on the design of high thermal stable SCSM for applications in high-voltage cables.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"262 ","pages":"Article 111046"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825000144","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Ethylene-vinyl acetate copolymer (EVA)-based semi-conductive shielding materials (SCSM) are extensively used in low- and medium-voltage cables. However, the limited thermal stability of EVA prevents its application in high-voltage cables. Herein, low-density polyethylene (LDPE) was introduced to blend with EVA, and carbon black (CB) served as conductive fillers to fabricate the CB/EVA@LDPE composites with enhanced thermal stability for application as high-voltage SCSM. Benefiting from the inter-chain interaction between EVA and LDPE molecular chains and the selective distribution of CB, the CB/EVA@LDPE composites achieve the integration of favorable thermal stability, superior electrical performance and good mechanical properties. Specifically, the resultant composites exhibit a superior initial decomposition temperature (300.1 °C) at 30 phr LDPE compared to the CB/EVA composites (285.6 °C). The tensile strength and elongation at break of the CB/EVA@LDPE composites are 18.6 MPa and 281.2 %, which still maintain a desirable level. Moreover, the incorporation of LDPE also contributes to a favorable volume resistivity of 63.9 Ω cm and low PTC intensity (4.7) based on the unique conductive network in the EVA/LDPE blend system. This work is expected to provide favorable insights on the design of high thermal stable SCSM for applications in high-voltage cables.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
期刊最新文献
Conformal Al2O3 coating layer improves electrical insulation of the oriented carbon fibers arrays for highly thermally conductive interface materials On the development of mode II interlaminar damage-tolerant additive manufactured continuous fiber-reinforced polymers: An interlaminar hybridization strategy A triple action mechanism synergistic interface based on tannic acid/poly (ethylene glycol)/Fe3+ formation for improving the properties of short bamboo fiber/PBSA biocomposites Editorial Board Comparative analysis of NOL-ring tensile strength in towpreg and slit-tape for filament winding: Influence of resin viscosity, tack, and consolidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1