Organic-inorganic crosslinking PVDF composites for high storage densities

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composites Science and Technology Pub Date : 2025-01-28 DOI:10.1016/j.compscitech.2025.111082
Qianqian Yu , Haijun Wang , Yisha Ma , Shaojuan Wang , Jian Hu , Hao Zhang , Tong Wang , Leipeng Liu , Shouke Yan
{"title":"Organic-inorganic crosslinking PVDF composites for high storage densities","authors":"Qianqian Yu ,&nbsp;Haijun Wang ,&nbsp;Yisha Ma ,&nbsp;Shaojuan Wang ,&nbsp;Jian Hu ,&nbsp;Hao Zhang ,&nbsp;Tong Wang ,&nbsp;Leipeng Liu ,&nbsp;Shouke Yan","doi":"10.1016/j.compscitech.2025.111082","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid development of modern electronic and electrical applications has attracted extensive attention to dielectric polymer matrix composites with high dielectric constant and energy density. In this study, an organic-inorganic homogeneous composite with improved phase interface was prepared by physically cross-linking amorphous calcium sulfate oligomers (CSOs) with PVDF chains. The dielectric properties and energy storage properties of the composite films were improved by controlling the microstructure of PVDF composite films by CSOs. The results show that the addition of CSOs has a strong inducing effect on the polarity of PVDF, while reducing the crystallinity and crystallite size of PVDF, thereby improving the breakdown performance of the composites. When the applied electric field is 324 kV/mm, the maximum energy storage density is 16.12 J/cm<sup>3</sup> and the energy storage efficiency is maintained at 87.17 %. Therefore, this work provides a new strategy for the preparation of high-performance polymer-based energy storage materials.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"262 ","pages":"Article 111082"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825000508","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of modern electronic and electrical applications has attracted extensive attention to dielectric polymer matrix composites with high dielectric constant and energy density. In this study, an organic-inorganic homogeneous composite with improved phase interface was prepared by physically cross-linking amorphous calcium sulfate oligomers (CSOs) with PVDF chains. The dielectric properties and energy storage properties of the composite films were improved by controlling the microstructure of PVDF composite films by CSOs. The results show that the addition of CSOs has a strong inducing effect on the polarity of PVDF, while reducing the crystallinity and crystallite size of PVDF, thereby improving the breakdown performance of the composites. When the applied electric field is 324 kV/mm, the maximum energy storage density is 16.12 J/cm3 and the energy storage efficiency is maintained at 87.17 %. Therefore, this work provides a new strategy for the preparation of high-performance polymer-based energy storage materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
期刊最新文献
3D phase gradient induced surface wave torsion metastructure for anomalous electromagnetic damage tolerance A novel semi-empirical analytical method for stiffness prediction of unidirectional discontinuous-fiber composites One-step assembly of conductive coatings from polyphenol and Nanocarbon-PIL: A versatile approach for fabricating multifunctional sensors Quantitative analysis of orientation distribution of graphene platelets in nanocomposites using TEM Organic-inorganic crosslinking PVDF composites for high storage densities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1