{"title":"Sustainable synthesis of magnetic nanoparticles: Biological applications of Cedrus deodara extract","authors":"Shilpa Kumari , Mohit Sahni , Soumya Pandit , Neha Verma , Firdaus Mohamad Hamzah , Kuldeep Sharma , Kanu Priya","doi":"10.1016/j.cap.2025.01.015","DOIUrl":null,"url":null,"abstract":"<div><div>This research article explains a green synthesis of α-Fe₂O₃ nanoparticles (NPs) utilizing <em>Cedrus deodara</em> wood extract. The wood extract of this medicinal plant was used to synthesize the α-Fe₂O₃ NPs and utilized in various applications including biological applications on Osteosarcoma (MG63) and Lung cancer (A549). Along with this, we have also estimated its anti-bacterial properties on <em>P. aeruginosa</em> bacterial strain. The α-Fe₂O₃ NPs showed high antioxidant activity with DPPH and FRAP values of 86.05 % and 86.04 %, outperforming the antioxidant capacity of <em>Cedrus deodara</em> extract alone (79.16 % and 71.09 %). In cytotoxicity tests, they effectively inhibited osteosarcoma (MG63) and lung carcinoma (A549) cell lines, showing greater cytotoxicity against MG63 cells (IC<sub>50</sub> of 19.86 μg/mL) than A549 cells (IC<sub>50</sub> of 24.66 μg/mL) after 24 h. They also displayed strong antibacterial activity. This work presents a novel biogenic α-Fe₂O₃ nanoparticle synthesized from <em>Cedrus deodara</em> extract, exhibiting exceptional antioxidant, cytotoxic, and antibacterial activities.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"72 ","pages":"Pages 1-10"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925000161","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This research article explains a green synthesis of α-Fe₂O₃ nanoparticles (NPs) utilizing Cedrus deodara wood extract. The wood extract of this medicinal plant was used to synthesize the α-Fe₂O₃ NPs and utilized in various applications including biological applications on Osteosarcoma (MG63) and Lung cancer (A549). Along with this, we have also estimated its anti-bacterial properties on P. aeruginosa bacterial strain. The α-Fe₂O₃ NPs showed high antioxidant activity with DPPH and FRAP values of 86.05 % and 86.04 %, outperforming the antioxidant capacity of Cedrus deodara extract alone (79.16 % and 71.09 %). In cytotoxicity tests, they effectively inhibited osteosarcoma (MG63) and lung carcinoma (A549) cell lines, showing greater cytotoxicity against MG63 cells (IC50 of 19.86 μg/mL) than A549 cells (IC50 of 24.66 μg/mL) after 24 h. They also displayed strong antibacterial activity. This work presents a novel biogenic α-Fe₂O₃ nanoparticle synthesized from Cedrus deodara extract, exhibiting exceptional antioxidant, cytotoxic, and antibacterial activities.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.