Imputation in well log data: A benchmark for machine learning methods

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2025-02-01 DOI:10.1016/j.cageo.2024.105789
Pedro H.T. Gama , Jackson Faria , Jessica Sena , Francisco Neves , Vinícius R. Riffel , Lucas Perez , André Korenchendler , Matheus C.A. Sobreira , Alexei M.C. Machado
{"title":"Imputation in well log data: A benchmark for machine learning methods","authors":"Pedro H.T. Gama ,&nbsp;Jackson Faria ,&nbsp;Jessica Sena ,&nbsp;Francisco Neves ,&nbsp;Vinícius R. Riffel ,&nbsp;Lucas Perez ,&nbsp;André Korenchendler ,&nbsp;Matheus C.A. Sobreira ,&nbsp;Alexei M.C. Machado","doi":"10.1016/j.cageo.2024.105789","DOIUrl":null,"url":null,"abstract":"<div><div>Well log data are an important source of information about the geological patterns along the wellbore but may present missing values due to sensor failure, wellbore irregularities or the cost of acquisition. As a consequence, incomplete log sequences may impact the performance of machine learning (ML) models for classification or prediction. Although several approaches for this problem have been proposed in the literature, the lack of consistent evaluation protocols hinders the comparison of different solutions. This paper aims at bridging this gap by proposing a robust benchmark for comparing imputation ML methods. It contributes to establish a standardized experimental protocol that could be used by the petroleum industry in the development of new methodologies for this purpose. It differs from previous works that have been based on different datasets and metrics that prevent an unbiased comparison of results. Eight imputation methods were investigated: Autoencoders (AE), Bidirectional Recurrent Neural Network for Time Series Imputation, Last Observation Carry Forward (LOCF), Random Forests, Self Attention for Imputation of Time Series (SAITS), Transformers, UNet, and XGBoost. The Geolink, Taranaki and Teapot datasets were used to contemplate data from different locations, from which sequences of measurements were deleted and further imputed by the selected ML methods. The Mean Absolute Error, Mean Squared Error, Root Mean Squared Error, Pearson Correlation Coefficient and the Determination Coefficient were used for performance assessment in a set of 480 experiments. The results demonstrated that simple methods as the LOCF and the AE provided competitive imputation results, although the overall best model was SAITS. This reveals that self-attention models are a promising trend for imputation techniques. The choice for the LOCF, AE, SAITS, UNet, and XGBoost to compose the proposed benchmark was corroborated by subsequent statistical analyses, showing that it can be considered a compromise between simplicity, unbiasedness, variety and meaningfulness.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"196 ","pages":"Article 105789"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002723","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Well log data are an important source of information about the geological patterns along the wellbore but may present missing values due to sensor failure, wellbore irregularities or the cost of acquisition. As a consequence, incomplete log sequences may impact the performance of machine learning (ML) models for classification or prediction. Although several approaches for this problem have been proposed in the literature, the lack of consistent evaluation protocols hinders the comparison of different solutions. This paper aims at bridging this gap by proposing a robust benchmark for comparing imputation ML methods. It contributes to establish a standardized experimental protocol that could be used by the petroleum industry in the development of new methodologies for this purpose. It differs from previous works that have been based on different datasets and metrics that prevent an unbiased comparison of results. Eight imputation methods were investigated: Autoencoders (AE), Bidirectional Recurrent Neural Network for Time Series Imputation, Last Observation Carry Forward (LOCF), Random Forests, Self Attention for Imputation of Time Series (SAITS), Transformers, UNet, and XGBoost. The Geolink, Taranaki and Teapot datasets were used to contemplate data from different locations, from which sequences of measurements were deleted and further imputed by the selected ML methods. The Mean Absolute Error, Mean Squared Error, Root Mean Squared Error, Pearson Correlation Coefficient and the Determination Coefficient were used for performance assessment in a set of 480 experiments. The results demonstrated that simple methods as the LOCF and the AE provided competitive imputation results, although the overall best model was SAITS. This reveals that self-attention models are a promising trend for imputation techniques. The choice for the LOCF, AE, SAITS, UNet, and XGBoost to compose the proposed benchmark was corroborated by subsequent statistical analyses, showing that it can be considered a compromise between simplicity, unbiasedness, variety and meaningfulness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Editorial Board ScoreInver: 3D seismic impedance inversion based on scoring mechanism Hybrid Newton method for the acceleration of well event handling in the simulation of CO2 storage using supervised learning Linear filter theory for the forward Laplace transform and its use in calculating 1D EM responses Deep learning contribution to the automatic picking of surface-wave dispersion for the characterization of railway earthworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1