Jiaojiao Yi , Yining Zhai , Yue-yu-shan Cheng , Liang Shu , Dawei Zhang , Jing-Feng Li , Lisha Liu
{"title":"Spin-coated BiFeO3 films on Si wafers: Low processing temperature but prominent piezoelectricity","authors":"Jiaojiao Yi , Yining Zhai , Yue-yu-shan Cheng , Liang Shu , Dawei Zhang , Jing-Feng Li , Lisha Liu","doi":"10.1016/j.jmat.2024.07.010","DOIUrl":null,"url":null,"abstract":"<div><div>The direct integration of crystalline oxide layers with industrial Si substrate, specifically compatible with CMOS technology, requires the development of relatively simple, low-temperature processing routes below 450 °C. Here, a novel nonstoichiometric approach is proposed to achieve fabrication of BiFeO<sub>3</sub> films at 450 °C. Of particular importance is that, a saturation and remnant polarization of ∼80 μC/cm<sup>2</sup> and ∼60 μC/cm<sup>2</sup> and a strain as large as 1% are obtained. This strain stands as one of the most impressive values reported for thin films, comparable to the most superior strain obtained in ferroelectric films fabricated at temperatures exceeding 700 °C. The current work provides a new paradigm with significant simplicity and novel efficacy in reducing processing temperatures, as well offers a promising material for memory and piezo-driven actuating applications, especially meeting the increasing demand for precision position control systems at the nanometer scale.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 3","pages":"Article 100925"},"PeriodicalIF":8.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824001643","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The direct integration of crystalline oxide layers with industrial Si substrate, specifically compatible with CMOS technology, requires the development of relatively simple, low-temperature processing routes below 450 °C. Here, a novel nonstoichiometric approach is proposed to achieve fabrication of BiFeO3 films at 450 °C. Of particular importance is that, a saturation and remnant polarization of ∼80 μC/cm2 and ∼60 μC/cm2 and a strain as large as 1% are obtained. This strain stands as one of the most impressive values reported for thin films, comparable to the most superior strain obtained in ferroelectric films fabricated at temperatures exceeding 700 °C. The current work provides a new paradigm with significant simplicity and novel efficacy in reducing processing temperatures, as well offers a promising material for memory and piezo-driven actuating applications, especially meeting the increasing demand for precision position control systems at the nanometer scale.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.