{"title":"Semiconductor-cocatalyst interfacial electron transfer in actual photocatalytic reaction","authors":"Jiazang Chen","doi":"10.1016/S1872-2067(24)60178-6","DOIUrl":null,"url":null,"abstract":"<div><h3>ABSTRACT</h3><div>Semiconductor-cocatalyst interfacial electron transfer has widely been considered as a fast step occurring on picosecond-microsecond timescale in photocatalytic reaction. However, the formed potential barriers severely slow this interfacial electronic process by thermionic emission. Although trap-assisted charge recombination can transfer electrons from semiconductor to cocatalyst and can even be evident under weak illumination, the parallel connection with thermionic emission makes the photocatalytic photon utilization encounter a minimum along the variation of light intensity. By this cognition, the light-intensity-dependent photocatalytic behaviors can be predicted by simulating the photoinduced semiconductor-cocatalyst interfacial electron transfer that mainly determines the reaction rate. We then propose a (photo)electrochemical method to evaluate the time constants for occurring this interfacial electronic process in actual photocatalytic reaction without relying on extremely high photon flux that is required to generate discernible optical signal in common instrumental methods based on ultrafast pulse laser. The evaluated decisecond-second timescale can accurately guide us to develop certain strategies to facilitate this rate-determining step to improve photon utilization.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"68 ","pages":"Pages 213-222"},"PeriodicalIF":15.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601786","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT
Semiconductor-cocatalyst interfacial electron transfer has widely been considered as a fast step occurring on picosecond-microsecond timescale in photocatalytic reaction. However, the formed potential barriers severely slow this interfacial electronic process by thermionic emission. Although trap-assisted charge recombination can transfer electrons from semiconductor to cocatalyst and can even be evident under weak illumination, the parallel connection with thermionic emission makes the photocatalytic photon utilization encounter a minimum along the variation of light intensity. By this cognition, the light-intensity-dependent photocatalytic behaviors can be predicted by simulating the photoinduced semiconductor-cocatalyst interfacial electron transfer that mainly determines the reaction rate. We then propose a (photo)electrochemical method to evaluate the time constants for occurring this interfacial electronic process in actual photocatalytic reaction without relying on extremely high photon flux that is required to generate discernible optical signal in common instrumental methods based on ultrafast pulse laser. The evaluated decisecond-second timescale can accurately guide us to develop certain strategies to facilitate this rate-determining step to improve photon utilization.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.