An accurate interface detection of TBCs coated blades by double pulse femtosecond laser-induced breakdown spectroscopy

IF 3.2 2区 化学 Q1 SPECTROSCOPY Spectrochimica Acta Part B: Atomic Spectroscopy Pub Date : 2025-02-01 DOI:10.1016/j.sab.2024.107088
Zhao Xu, Lan Jiang, Sumei Wang, Jiaxin Sun, Jie Zhan, Weihua Zhu
{"title":"An accurate interface detection of TBCs coated blades by double pulse femtosecond laser-induced breakdown spectroscopy","authors":"Zhao Xu,&nbsp;Lan Jiang,&nbsp;Sumei Wang,&nbsp;Jiaxin Sun,&nbsp;Jie Zhan,&nbsp;Weihua Zhu","doi":"10.1016/j.sab.2024.107088","DOIUrl":null,"url":null,"abstract":"<div><div>To control the laser machining process of cooling holes on thermal barrier coatings (TBCs) deposited on turbine blades, we implemented interface detection in the depth direction by employing femtosecond-laser-induced breakdown spectroscopy (fs-LIBS). With the plasma reheating and reionization effects of double pulses, a maximum spectral enhancement factors of 12.5 was obtained. The signal-to-noise ratio of the spectrum was improved with decreasing the ablation volume. As a result, accurate detection of the interfaces between the yttria-stabilized zirconia (YSZ) coating, Ni-based superalloy substrate and glass slide was achieved. The comparison of the LIBS results with the energy-dispersive X-ray spectroscopy (EDS) confirmed the effectiveness of the detection method, which exhibited a minimum ablation rate of 255 nm per pulse. Furthermore, a practical online detection approach was proposed for depth profiling and breakdown detection during the machining process of multilayer materials with a maximum detection depth of 273 μm.</div></div>","PeriodicalId":21890,"journal":{"name":"Spectrochimica Acta Part B: Atomic Spectroscopy","volume":"224 ","pages":"Article 107088"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part B: Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0584854724002337","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

To control the laser machining process of cooling holes on thermal barrier coatings (TBCs) deposited on turbine blades, we implemented interface detection in the depth direction by employing femtosecond-laser-induced breakdown spectroscopy (fs-LIBS). With the plasma reheating and reionization effects of double pulses, a maximum spectral enhancement factors of 12.5 was obtained. The signal-to-noise ratio of the spectrum was improved with decreasing the ablation volume. As a result, accurate detection of the interfaces between the yttria-stabilized zirconia (YSZ) coating, Ni-based superalloy substrate and glass slide was achieved. The comparison of the LIBS results with the energy-dispersive X-ray spectroscopy (EDS) confirmed the effectiveness of the detection method, which exhibited a minimum ablation rate of 255 nm per pulse. Furthermore, a practical online detection approach was proposed for depth profiling and breakdown detection during the machining process of multilayer materials with a maximum detection depth of 273 μm.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
12.10%
发文量
173
审稿时长
81 days
期刊介绍: Spectrochimica Acta Part B: Atomic Spectroscopy, is intended for the rapid publication of both original work and reviews in the following fields: Atomic Emission (AES), Atomic Absorption (AAS) and Atomic Fluorescence (AFS) spectroscopy; Mass Spectrometry (MS) for inorganic analysis covering Spark Source (SS-MS), Inductively Coupled Plasma (ICP-MS), Glow Discharge (GD-MS), and Secondary Ion Mass Spectrometry (SIMS). Laser induced atomic spectroscopy for inorganic analysis, including non-linear optical laser spectroscopy, covering Laser Enhanced Ionization (LEI), Laser Induced Fluorescence (LIF), Resonance Ionization Spectroscopy (RIS) and Resonance Ionization Mass Spectrometry (RIMS); Laser Induced Breakdown Spectroscopy (LIBS); Cavity Ringdown Spectroscopy (CRDS), Laser Ablation Inductively Coupled Plasma Atomic Emission Spectroscopy (LA-ICP-AES) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). X-ray spectrometry, X-ray Optics and Microanalysis, including X-ray fluorescence spectrometry (XRF) and related techniques, in particular Total-reflection X-ray Fluorescence Spectrometry (TXRF), and Synchrotron Radiation-excited Total reflection XRF (SR-TXRF). Manuscripts dealing with (i) fundamentals, (ii) methodology development, (iii)instrumentation, and (iv) applications, can be submitted for publication.
期刊最新文献
Duplication of periodic micro-structure on the surface of a nickel substrate and its application in surface-enhanced laser-induced breakdown spectroscopy Corrigendum to “Quantitative analysis of coal quality by mutual information-particle swarm optimization (MI-PSO) hybrid variable selection method coupled with spectral fusion strategy of laser-induced breakdown spectroscopy (LIBS) and fourier transform infrared spectroscopy (FTIR)” [Spectrochimica Acta Part B: Atomic Spectroscopy 178 (2021) 106112] Editorial Board Outside Front Cover - Journal name, Cover image, Volume issue details, ISSN, Cover Date, Elsevier Logo and Society Logo if required An accurate interface detection of TBCs coated blades by double pulse femtosecond laser-induced breakdown spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1