Gaige Ru , Bin Gao , Songwen Xue , Jun Xian , Yuxi Xie , Wai Lok Woo
{"title":"Pipeline integrity gauges based on dynamic magnetic coupling sensing technology","authors":"Gaige Ru , Bin Gao , Songwen Xue , Jun Xian , Yuxi Xie , Wai Lok Woo","doi":"10.1016/j.ndteint.2024.103307","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a novel sensing system for in-line-inspection of pipelines, based on dynamic coupled of integrating the magnetic perturbation with motive induced eddy current. This approach simultaneously addresses the key challenges of high energy-consumption as well as the detection of multi-types of defects. The sensing characteristics involves a novel probe structure incorporating a detection coil and ring-magnetic source, capable of identifying different defects at varying speed. In particular, the motion-induced eddy current can be theoretically modeled by the relative motion between the magnet and the pipe. Interpretation of both distribution and perturbations of eddy currents at different speeds is detail discussed. The internal and external receiving coils can capture information on magnetic perturbation and eddy currents disturbances, effectively elucidating the impact of the probe velocity. Finally, the superiority of the proposed system was validated through simulation, experimental verification, and real pipe pulling testing.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"151 ","pages":"Article 103307"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096386952400272X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel sensing system for in-line-inspection of pipelines, based on dynamic coupled of integrating the magnetic perturbation with motive induced eddy current. This approach simultaneously addresses the key challenges of high energy-consumption as well as the detection of multi-types of defects. The sensing characteristics involves a novel probe structure incorporating a detection coil and ring-magnetic source, capable of identifying different defects at varying speed. In particular, the motion-induced eddy current can be theoretically modeled by the relative motion between the magnet and the pipe. Interpretation of both distribution and perturbations of eddy currents at different speeds is detail discussed. The internal and external receiving coils can capture information on magnetic perturbation and eddy currents disturbances, effectively elucidating the impact of the probe velocity. Finally, the superiority of the proposed system was validated through simulation, experimental verification, and real pipe pulling testing.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.