Convolutional autoencoder-based ground motion clustering and selection

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL Soil Dynamics and Earthquake Engineering Pub Date : 2025-01-22 DOI:10.1016/j.soildyn.2025.109240
Yiming Jia , Mehrdad Sasani
{"title":"Convolutional autoencoder-based ground motion clustering and selection","authors":"Yiming Jia ,&nbsp;Mehrdad Sasani","doi":"10.1016/j.soildyn.2025.109240","DOIUrl":null,"url":null,"abstract":"<div><div>Ground motion selection has become increasingly central to the assessment of earthquake resilience. The selection of ground motion records for use in nonlinear dynamic analysis significantly affects structural response. This, in turn, will impact the outcomes of earthquake resilience analysis. This paper presents a new ground motion clustering algorithm, which can be embedded in current ground motion selection methods to properly select representative ground motion records that a structure of interest will probabilistically experience. The proposed clustering-based ground motion selection method includes four main steps: 1) leveraging domain-specific knowledge to pre-select candidate ground motions; 2) using a convolutional autoencoder to learn low-dimensional underlying characteristics of candidate ground motions’ response spectra – i.e., latent features; 3) performing k-means clustering to classify the learned latent features, equivalent to cluster the response spectra of candidate ground motions; and 4) embedding the clusters in the conditional spectra-based ground motion selection. The selected ground motions can represent a given hazard level well (by matching conditional spectra) and fully describe the complete set of candidate ground motions. Three case studies for modified, pulse-type, and non-pulse-type ground motions are designed to evaluate the performance of the proposed ground motion clustering algorithm (convolutional autoencoder + k-means). Considering the limited number of pre-selected candidate ground motions in the last two case studies, the response spectra simulation and transfer learning are used to improve the stability and reproducibility of the proposed ground motion clustering algorithm. The results of the three case studies demonstrate that the convolutional autoencoder + k-means can 1) achieve 100 % accuracy in classifying ground motion response spectra, 2) correctly determine the optimal number of clusters, and 3) outperform established clustering algorithms (i.e., autoencoder + k-means, time series k-means, spectral clustering, and k-means on ground motion influence factors). Using the proposed clustering-based ground motion selection method, an application is performed to select ground motions for a structure in San Francisco, California. The developed user-friendly codes are published for practical use.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"191 ","pages":"Article 109240"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125000338","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ground motion selection has become increasingly central to the assessment of earthquake resilience. The selection of ground motion records for use in nonlinear dynamic analysis significantly affects structural response. This, in turn, will impact the outcomes of earthquake resilience analysis. This paper presents a new ground motion clustering algorithm, which can be embedded in current ground motion selection methods to properly select representative ground motion records that a structure of interest will probabilistically experience. The proposed clustering-based ground motion selection method includes four main steps: 1) leveraging domain-specific knowledge to pre-select candidate ground motions; 2) using a convolutional autoencoder to learn low-dimensional underlying characteristics of candidate ground motions’ response spectra – i.e., latent features; 3) performing k-means clustering to classify the learned latent features, equivalent to cluster the response spectra of candidate ground motions; and 4) embedding the clusters in the conditional spectra-based ground motion selection. The selected ground motions can represent a given hazard level well (by matching conditional spectra) and fully describe the complete set of candidate ground motions. Three case studies for modified, pulse-type, and non-pulse-type ground motions are designed to evaluate the performance of the proposed ground motion clustering algorithm (convolutional autoencoder + k-means). Considering the limited number of pre-selected candidate ground motions in the last two case studies, the response spectra simulation and transfer learning are used to improve the stability and reproducibility of the proposed ground motion clustering algorithm. The results of the three case studies demonstrate that the convolutional autoencoder + k-means can 1) achieve 100 % accuracy in classifying ground motion response spectra, 2) correctly determine the optimal number of clusters, and 3) outperform established clustering algorithms (i.e., autoencoder + k-means, time series k-means, spectral clustering, and k-means on ground motion influence factors). Using the proposed clustering-based ground motion selection method, an application is performed to select ground motions for a structure in San Francisco, California. The developed user-friendly codes are published for practical use.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
期刊最新文献
A system identification technique for the estimation of the bulk modulus based on pore water pressure dissipation records Deep learning-based stochastic ground motion modeling using generative adversarial and convolutional neural networks Analytical approach to influencing mechanism of cement-soil reinforcement on horizontal dynamic response of single piles Evaluation of overburden correction factor (Kσ) of pond ash for liquefaction analysis under earthquake loading Hysteresis model of metal rubber bridge bearings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1