Performance evaluation of revere fault-crossing buried pipeline with super-absorbent-polymer concrete as trench backfill

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL Soil Dynamics and Earthquake Engineering Pub Date : 2025-02-01 DOI:10.1016/j.soildyn.2025.109275
Lingyue Xu , Zilan Zhong , Zhen Cui , Xiuli Du
{"title":"Performance evaluation of revere fault-crossing buried pipeline with super-absorbent-polymer concrete as trench backfill","authors":"Lingyue Xu ,&nbsp;Zilan Zhong ,&nbsp;Zhen Cui ,&nbsp;Xiuli Du","doi":"10.1016/j.soildyn.2025.109275","DOIUrl":null,"url":null,"abstract":"<div><div>Geological and topographical challenges in fault zones pose significant risks to the structural integrity of buried pipelines. Previous studies have shown that continuously buried pipelines using loose sand as backfill material experience severe damage under active fault displacement. This study proposes the use of super-absorbent-polymer concrete (SAPC) as an alternative trench backfill to mitigate structural damage in buried pipelines subjected to reverse fault movement, as opposed to conventional backfill with loose sand. This study begins with the preparation of lightweight porous concrete containing large super-absorbent-polymer aggregates, followed by mechanical property testing to establish a constitutive model of SAPC. The SAPC is then employed to backfill the trench of a fault-crossing pipeline. A finite element model is developed to analyze the pipeline-SAPC trench-soil interaction and evaluate the performance of the pipeline when the trench is backfilled with SAPC. Critical parameters such as SAPC backfill length, overlying thickness, and elastic modulus are also examined for their effects on the performance of a buried pipeline. The numerical results indicate that compared with conventional backfill with loose sand, the critical reverse fault displacement of the pipeline can generally be increased by over 100 % after using SAPC as the backfill material. Optimal pipeline performance is observed when the SAPC backfill length is approximately 60 times the pipeline diameter. Besides, a thinner overlying SAPC thickness will generally enhance the performance of buried steel pipelines under reverse fault movement. Additionally, by adjusting the sand-cement ratio and SAP volume fraction, a SAPC with a higher elastic modulus can slightly improve the performance of the fault-crossing pipeline.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"191 ","pages":"Article 109275"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125000685","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Geological and topographical challenges in fault zones pose significant risks to the structural integrity of buried pipelines. Previous studies have shown that continuously buried pipelines using loose sand as backfill material experience severe damage under active fault displacement. This study proposes the use of super-absorbent-polymer concrete (SAPC) as an alternative trench backfill to mitigate structural damage in buried pipelines subjected to reverse fault movement, as opposed to conventional backfill with loose sand. This study begins with the preparation of lightweight porous concrete containing large super-absorbent-polymer aggregates, followed by mechanical property testing to establish a constitutive model of SAPC. The SAPC is then employed to backfill the trench of a fault-crossing pipeline. A finite element model is developed to analyze the pipeline-SAPC trench-soil interaction and evaluate the performance of the pipeline when the trench is backfilled with SAPC. Critical parameters such as SAPC backfill length, overlying thickness, and elastic modulus are also examined for their effects on the performance of a buried pipeline. The numerical results indicate that compared with conventional backfill with loose sand, the critical reverse fault displacement of the pipeline can generally be increased by over 100 % after using SAPC as the backfill material. Optimal pipeline performance is observed when the SAPC backfill length is approximately 60 times the pipeline diameter. Besides, a thinner overlying SAPC thickness will generally enhance the performance of buried steel pipelines under reverse fault movement. Additionally, by adjusting the sand-cement ratio and SAP volume fraction, a SAPC with a higher elastic modulus can slightly improve the performance of the fault-crossing pipeline.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
期刊最新文献
Cyclic test and numerical analysis of an innovative re-centering SMA cable-wrapped wedge friction damper The influence of forward-directivity pulse-like ground motion orientation angles on structural collapse capacity Nonlinear stiffened inertial amplifier tuned mass friction dampers Effect of static shear stress on cyclic behaviors of medium-dense sand under multi-directional cyclic simple shear loading Ground-motion generations using Multi-label Conditional Embedding–conditional Denoising Diffusion Probabilistic Model (ML–cDDPM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1