A method for determining the probability of seabed liquefaction considering stratigraphic structure and variations in soil dynamic characteristics

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL Soil Dynamics and Earthquake Engineering Pub Date : 2025-01-27 DOI:10.1016/j.soildyn.2025.109248
Zhenglong Zhou, Zhengyang Zhang, Ziyi Ye, Guanlan Xu, Yan Zhang, Guoxing Chen, Jiawei Jiang
{"title":"A method for determining the probability of seabed liquefaction considering stratigraphic structure and variations in soil dynamic characteristics","authors":"Zhenglong Zhou,&nbsp;Zhengyang Zhang,&nbsp;Ziyi Ye,&nbsp;Guanlan Xu,&nbsp;Yan Zhang,&nbsp;Guoxing Chen,&nbsp;Jiawei Jiang","doi":"10.1016/j.soildyn.2025.109248","DOIUrl":null,"url":null,"abstract":"<div><div>Existing research on soil liquefaction probability discrimination usually only considers the inherent variability of soil parameters, neglecting the impact of stratigraphic variability. To address this, the study couples an embedded Markov chain model with a conditional random field model to simulate the spatial variability of both stratigraphy and soil parameters simultaneously. The Yangtze River Delta region in China, due to its unique geographical location, is highly sensitive to secondary disasters such as soil liquefaction triggered by earthquakes. This study uses measured borehole data from the coastal area of the Yangtze River estuary in the region, employing the embedded Markov chain model to simulate stratigraphic structural variability and the conditional random field model to simulate soil dynamic parameters. The simulation results are used to assess the liquefaction probability of seabed sites under seismic conditions, providing a scientific basis for the site selection and safety evaluation of marine engineering projects. The research indicates that considering the spatial variability of both stratigraphy and soil parameters is crucial for accurately assessing liquefaction potential.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"191 ","pages":"Article 109248"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125000417","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Existing research on soil liquefaction probability discrimination usually only considers the inherent variability of soil parameters, neglecting the impact of stratigraphic variability. To address this, the study couples an embedded Markov chain model with a conditional random field model to simulate the spatial variability of both stratigraphy and soil parameters simultaneously. The Yangtze River Delta region in China, due to its unique geographical location, is highly sensitive to secondary disasters such as soil liquefaction triggered by earthquakes. This study uses measured borehole data from the coastal area of the Yangtze River estuary in the region, employing the embedded Markov chain model to simulate stratigraphic structural variability and the conditional random field model to simulate soil dynamic parameters. The simulation results are used to assess the liquefaction probability of seabed sites under seismic conditions, providing a scientific basis for the site selection and safety evaluation of marine engineering projects. The research indicates that considering the spatial variability of both stratigraphy and soil parameters is crucial for accurately assessing liquefaction potential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
期刊最新文献
Cyclic test and numerical analysis of an innovative re-centering SMA cable-wrapped wedge friction damper The influence of forward-directivity pulse-like ground motion orientation angles on structural collapse capacity Nonlinear stiffened inertial amplifier tuned mass friction dampers Effect of static shear stress on cyclic behaviors of medium-dense sand under multi-directional cyclic simple shear loading Ground-motion generations using Multi-label Conditional Embedding–conditional Denoising Diffusion Probabilistic Model (ML–cDDPM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1