Coupled feldspar dissolution and secondary mineral precipitation in batch systems: 6. Labradorite dissolution, calcite growth, and clay precipitation at 60 °C and pH 8.2–8.4

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geochimica et Cosmochimica Acta Pub Date : 2025-02-01 DOI:10.1016/j.gca.2024.11.030
Mingkun Chen , Lei Gong , Jacques Schott , Peng Lu , Kaiyun Chen , Honglin Yuan , Jian Sun , Si Athena Chen , John Apps , Chen Zhu
{"title":"Coupled feldspar dissolution and secondary mineral precipitation in batch systems: 6. Labradorite dissolution, calcite growth, and clay precipitation at 60 °C and pH 8.2–8.4","authors":"Mingkun Chen ,&nbsp;Lei Gong ,&nbsp;Jacques Schott ,&nbsp;Peng Lu ,&nbsp;Kaiyun Chen ,&nbsp;Honglin Yuan ,&nbsp;Jian Sun ,&nbsp;Si Athena Chen ,&nbsp;John Apps ,&nbsp;Chen Zhu","doi":"10.1016/j.gca.2024.11.030","DOIUrl":null,"url":null,"abstract":"<div><div>We conducted experiments on concurrent labradorite dissolution, calcite precipitation, and clay precipitation in batch reactor systems and tracked reaction processes using multiple isotope tracers. Labradorite was chosen for its role as a major and reactive component in basalt; the experiments thus directly impact our understanding of CO<sub>2</sub> storage in basalt aquifers and enhanced rock weathering. We doped initial solutions with <sup>29</sup>Si, <sup>43</sup>Ca, and Ca<sup>13</sup>CO<sub>3</sub>(s). Experiments were conducted at 60 °C and pH ∼ 8.3 for up to 840 h, with isotope ratios in the experimental aqueous solutions measured using MC-ICP-MS. Unidirectional rates of labradorite dissolution near equilibrium were approximately two orders of magnitude slower than far-from-equilibrium rates reported in the literature. Calcite growth occurred near equilibrium and the rates were limited by the labradorite dissolution rates.</div><div>In the steady state phase, the interplay of these three heterogeneous reactions—labradorite dissolution, calcite growth, and clay precipitation—results in a coupled system that approaches a near-equilibrium state. The system does not reach true equilibrium because labradorite continues to dissolve, albeit at a much slower rate near equilibrium. The overall reaction can be approximated as,</div><div>Na<sub>0.4</sub>Ca<sub>0.6</sub>Al<sub>1.6</sub>Si<sub>2.4</sub>O<sub>8</sub> + 0.6HCO<sub>3</sub><sup>-</sup> + 1·.7H<sub>2</sub>O + 0.4H<sup>+</sup> → 0.4Na<sup>+</sup> + 0.6CaCO<sub>3(s)</sub> + 0.5Al<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4(s)</sub> + 0.6Al(OH)<sub>4</sub><sup>-</sup> + 1.4SiO<sub>2</sub><sup>o</sup><sub>(aq)</sub></div><div>The experimental results show that using short-term far-from-equilibrium rate constants would lead to an overestimation of feldspar weathering rates at the Earth’s surface (e.g., basalt weathering and enhanced rock weathering) and CO<sub>2</sub> mineralization in basalt aquifers.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"390 ","pages":"Pages 181-198"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703724006264","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We conducted experiments on concurrent labradorite dissolution, calcite precipitation, and clay precipitation in batch reactor systems and tracked reaction processes using multiple isotope tracers. Labradorite was chosen for its role as a major and reactive component in basalt; the experiments thus directly impact our understanding of CO2 storage in basalt aquifers and enhanced rock weathering. We doped initial solutions with 29Si, 43Ca, and Ca13CO3(s). Experiments were conducted at 60 °C and pH ∼ 8.3 for up to 840 h, with isotope ratios in the experimental aqueous solutions measured using MC-ICP-MS. Unidirectional rates of labradorite dissolution near equilibrium were approximately two orders of magnitude slower than far-from-equilibrium rates reported in the literature. Calcite growth occurred near equilibrium and the rates were limited by the labradorite dissolution rates.
In the steady state phase, the interplay of these three heterogeneous reactions—labradorite dissolution, calcite growth, and clay precipitation—results in a coupled system that approaches a near-equilibrium state. The system does not reach true equilibrium because labradorite continues to dissolve, albeit at a much slower rate near equilibrium. The overall reaction can be approximated as,
Na0.4Ca0.6Al1.6Si2.4O8 + 0.6HCO3- + 1·.7H2O + 0.4H+ → 0.4Na+ + 0.6CaCO3(s) + 0.5Al2Si2O5(OH)4(s) + 0.6Al(OH)4- + 1.4SiO2o(aq)
The experimental results show that using short-term far-from-equilibrium rate constants would lead to an overestimation of feldspar weathering rates at the Earth’s surface (e.g., basalt weathering and enhanced rock weathering) and CO2 mineralization in basalt aquifers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
期刊最新文献
In Situ experimental study of talc carbonation in C-O-H fluid: Implications for the deep carbon cycle Symbiont regulation of nitrogen metabolism and excretion in tropical planktonic foraminifera The effect of burning on the dissolution behaviour and silicon and oxygen isotope composition of phytolith silica Gold solubility enhanced by H2O in sulfur-bearing magma: Implications for gold partitioning and mineralization Mn(II)-induced phase transformation of Mn(IV) oxide in seawater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1