Mechanical properties and safety analysis of rack railways under seismic loads with different connection methods

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL Soil Dynamics and Earthquake Engineering Pub Date : 2025-01-28 DOI:10.1016/j.soildyn.2025.109272
Lang Wang , Zhaowei Chen , Jiangshen Chen
{"title":"Mechanical properties and safety analysis of rack railways under seismic loads with different connection methods","authors":"Lang Wang ,&nbsp;Zhaowei Chen ,&nbsp;Jiangshen Chen","doi":"10.1016/j.soildyn.2025.109272","DOIUrl":null,"url":null,"abstract":"<div><div>Rack railways are essential for mountainous railway transportation because of their ability to navigate steep slopes. However, in the tectonically active southwestern mountainous region of China, which is characterized by extensive fault zones, the behavior of rack systems on bridges under seismic loads has not been thoroughly studied. Here, this gap is addressed by developing a dynamic model of the vehicle–track–bridge system under seismic loading via train–track–bridge interaction theory. The mechanical properties of rack systems with both rigid and elastic connection methods are examined in this study, with a focus on key parameters such as rack tensile stress, shear stress, lateral torque, and bolt shear stress under varying dynamic loads. Rigid connections exhibit greater stiffness, leading to stress concentrations under coupled seismic and vehicle loads. This stiffness results in stress concentrations near bridge bearings, in which the maximum tensile stress, shear stress, and lateral torque reach 242 MPa, 226 MPa, and 2380 N m, respectively. Moreover, the maximum bolt shear stress reached 222 MPa, surpassing the shear and bending strength thresholds, further indicating a risk of localized structural failure. Conversely, elastic connections, with their buffering effects, effectively reduce stress concentrations. The maximum tensile stress, shear stress, lateral torque, and bolt shear stress were reduced to 68 MPa, 147 MPa, 1630 N m, and 120 MPa, respectively, which are all within safety limits. These findings demonstrate that elastic connections enhance the stability and safety of rack railway systems on bridges under seismic conditions. The aim of this study is to provide a theoretical basis for the design and safety assessment of rack railways on bridges in mountainous regions.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"191 ","pages":"Article 109272"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026772612500065X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rack railways are essential for mountainous railway transportation because of their ability to navigate steep slopes. However, in the tectonically active southwestern mountainous region of China, which is characterized by extensive fault zones, the behavior of rack systems on bridges under seismic loads has not been thoroughly studied. Here, this gap is addressed by developing a dynamic model of the vehicle–track–bridge system under seismic loading via train–track–bridge interaction theory. The mechanical properties of rack systems with both rigid and elastic connection methods are examined in this study, with a focus on key parameters such as rack tensile stress, shear stress, lateral torque, and bolt shear stress under varying dynamic loads. Rigid connections exhibit greater stiffness, leading to stress concentrations under coupled seismic and vehicle loads. This stiffness results in stress concentrations near bridge bearings, in which the maximum tensile stress, shear stress, and lateral torque reach 242 MPa, 226 MPa, and 2380 N m, respectively. Moreover, the maximum bolt shear stress reached 222 MPa, surpassing the shear and bending strength thresholds, further indicating a risk of localized structural failure. Conversely, elastic connections, with their buffering effects, effectively reduce stress concentrations. The maximum tensile stress, shear stress, lateral torque, and bolt shear stress were reduced to 68 MPa, 147 MPa, 1630 N m, and 120 MPa, respectively, which are all within safety limits. These findings demonstrate that elastic connections enhance the stability and safety of rack railway systems on bridges under seismic conditions. The aim of this study is to provide a theoretical basis for the design and safety assessment of rack railways on bridges in mountainous regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
期刊最新文献
Scaling P and S wave translational to array-derived rocking motions: An empirical estimation of local wave propagation direction and velocity in rock site conditions Hybrid empirical ground-motion model for the Alborz region of northern Iran Seismic fragility assessment of non-invasive geotechnical seismic isolation for existing bridges The shear characterization of hydrate-bearing clayey-silty sediments with layered hydrate distributions: Insights from different hydrate saturations and effective confining pressures Sobol’ sensitivity analysis of a 1D stochastic elasto-plastic seismic wave propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1