Behavior of tungsten-particle-reinforced Zirconium-based bulk metallic glass composites when penetrating a semi-infinite target

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Intermetallics Pub Date : 2025-02-01 DOI:10.1016/j.intermet.2024.108601
Huie Hu , Haoyu Jin , Junhan Chi , Yifan Du , Yunfei Ma
{"title":"Behavior of tungsten-particle-reinforced Zirconium-based bulk metallic glass composites when penetrating a semi-infinite target","authors":"Huie Hu ,&nbsp;Haoyu Jin ,&nbsp;Junhan Chi ,&nbsp;Yifan Du ,&nbsp;Yunfei Ma","doi":"10.1016/j.intermet.2024.108601","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the penetration behavior of 50 % vol. W-reinforced Zr-based bulk metallic glass composites (W<sub>p</sub>/Zr-BMGCs) with W particle sizes of 30, 75, and 250 μm using semi-infinite target penetration tests. The composites and craters were characterized via X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The impact velocities during the tests were approximately 850 and 1250 m s<sup>−1</sup>. The results show that the penetration depth of the W<sub>p</sub>/Zr-BMGCs at high impact velocities is greater than that at low impact velocities. At similar impact velocities, the smaller the particle sizes constituting the reinforcing phase, the greater the penetration depth. Among the composites, W<sub>p</sub>/Zr-BMGC with a W particle size of 30 μm achieves a maximum penetration depth of 10.62 mm at an impact velocity of 1283.8 m s<sup>−1</sup>. During penetration, the Zr-based amorphous phase melts and W particles primarily undergo plastic deformation. Adiabatic shear bands generated during penetration promote the nucleation and propagation of voids and cracks, resulting in target-plate damage. High-speed penetration-induced unloading waves generate coronal cracks near the bottom of the crater, accelerating target-plate damage. The good penetration capability of the W<sub>p</sub>/Zr-based amorphous composite with 30-μm W particles may be related to the beneficial effects of the small W particles on interfacial bonding.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"177 ","pages":"Article 108601"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524004205","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the penetration behavior of 50 % vol. W-reinforced Zr-based bulk metallic glass composites (Wp/Zr-BMGCs) with W particle sizes of 30, 75, and 250 μm using semi-infinite target penetration tests. The composites and craters were characterized via X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The impact velocities during the tests were approximately 850 and 1250 m s−1. The results show that the penetration depth of the Wp/Zr-BMGCs at high impact velocities is greater than that at low impact velocities. At similar impact velocities, the smaller the particle sizes constituting the reinforcing phase, the greater the penetration depth. Among the composites, Wp/Zr-BMGC with a W particle size of 30 μm achieves a maximum penetration depth of 10.62 mm at an impact velocity of 1283.8 m s−1. During penetration, the Zr-based amorphous phase melts and W particles primarily undergo plastic deformation. Adiabatic shear bands generated during penetration promote the nucleation and propagation of voids and cracks, resulting in target-plate damage. High-speed penetration-induced unloading waves generate coronal cracks near the bottom of the crater, accelerating target-plate damage. The good penetration capability of the Wp/Zr-based amorphous composite with 30-μm W particles may be related to the beneficial effects of the small W particles on interfacial bonding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
期刊最新文献
Effect of bonding temperature on the microstructure, IMCs growth, and shear property of Cu/Sn-9Zn-30Cu/Cu solder joint by transient liquid phase bonding Editorial Board In-situ formation of γ-TiAl based alloy coatings on a titanium alloy by tungsten inert gas cladding Corrosion and wear behavior of the Fe-based amorphous coating in extremely aggressive solutions Enhanced elasticity, fracture toughness and hardness in refractory TiZrHfNb high-entropy alloys by N- and O- doping engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1