High-efficient tetracycline removal triggered by Fe-based metal organic framework and sequential reutilization of spent adsorbent

Ting Chang , Yuchen Shang , Shiwen Li , Min Zeng , Jue Liu
{"title":"High-efficient tetracycline removal triggered by Fe-based metal organic framework and sequential reutilization of spent adsorbent","authors":"Ting Chang ,&nbsp;Yuchen Shang ,&nbsp;Shiwen Li ,&nbsp;Min Zeng ,&nbsp;Jue Liu","doi":"10.1016/j.colsuc.2024.100053","DOIUrl":null,"url":null,"abstract":"<div><div>Adsorption, as an economical and effective strategy, has been widely used for treating antibiotics pollution. However, the rational disposal and limited reutilization of spent adsorbents restricts the practical application. Herein, metal organic framework (MIL-101(Fe)) was fabricated and used to remove antibiotics from aqueous environment. Specifically, the removal rate and adsorption capacity towards TC, a model pollutant, reached 95.54 % ± 1.4 % and 231.04 ± 3.29 mg/g for M-105, respectively. The adsorption mechanism could be ascribed to electrostatic attraction, π-π interaction and hydrogen bonding, pore filling and complexation identified with experimental results and spectroscopic analysis. The spent adsorbent was further annealed to Fe/Fe<sub>3</sub>C/carbon composite, which possessed high-efficient microwave absorption performance due to good dielectric property. This work identifies MIL-101(Fe), obtained with a simple fabrication method, could be employed as a high-efficient adsorbent in TC removal and offers a novel strategy for reusing spent adsorbent in microwave absorption field.</div></div>","PeriodicalId":100290,"journal":{"name":"Colloids and Surfaces C: Environmental Aspects","volume":"3 ","pages":"Article 100053"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces C: Environmental Aspects","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949759024000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Adsorption, as an economical and effective strategy, has been widely used for treating antibiotics pollution. However, the rational disposal and limited reutilization of spent adsorbents restricts the practical application. Herein, metal organic framework (MIL-101(Fe)) was fabricated and used to remove antibiotics from aqueous environment. Specifically, the removal rate and adsorption capacity towards TC, a model pollutant, reached 95.54 % ± 1.4 % and 231.04 ± 3.29 mg/g for M-105, respectively. The adsorption mechanism could be ascribed to electrostatic attraction, π-π interaction and hydrogen bonding, pore filling and complexation identified with experimental results and spectroscopic analysis. The spent adsorbent was further annealed to Fe/Fe3C/carbon composite, which possessed high-efficient microwave absorption performance due to good dielectric property. This work identifies MIL-101(Fe), obtained with a simple fabrication method, could be employed as a high-efficient adsorbent in TC removal and offers a novel strategy for reusing spent adsorbent in microwave absorption field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sulfolane reduction by arginine and ferrous iron ions Sunlight responsive photo-oxidation of methylene blue dye using MgO/MnO2 nanoparticles Navigating challenges in electroplating wastewater management: A study on pollutant removal characteristics and economic impacts by physicochemical treatment Melamine-based hydrogen-bonded organic nanoframework for metal ion adsorption and antibacterial applications Rapid and effective absorption of dye molecules from their low-concentrated water solutions by organically cross-linked polyacrylamide-hexagonal boron nitride nanocomposite and polyacrylamide hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1