{"title":"Melamine-based hydrogen-bonded organic nanoframework for metal ion adsorption and antibacterial applications","authors":"Anand Prakash , Anu Sharma , Anita Yadav , Rakesh Kumar Sharma","doi":"10.1016/j.colsuc.2025.100059","DOIUrl":null,"url":null,"abstract":"<div><div>The present investigation reported the hydrothermal synthesis of melamine-based hydrogen organic nanoframework (M-HOFs) with promising toxic metal ions adsorption properties along with antibacterial activity. FTIR, XRD, FESEM, BET, and NTA analyses were utilized to perform the characterization of the synthesized M-HOF. The nanosized (83 nm), mesoporous nature, and high surface area (∼ 1199.93 m²/g) are responsible for adsorption and enhanced antibacterial activity. The adsorption studies showed that M-HOF is sensitive to Pb<sup>2+</sup> ions in an aqueous medium. The Pb<sup>2+</sup> ions quenched the emission of M-HOF to the largest extent with the <em>K</em><sub>SV</sub> value of 1.4099 × 10<sup>4</sup> M<sup>−1</sup>. The binding of Pb<sup>2+</sup> ions leads to electronic changes in the structure of M-HOF. Additionally, M-HOF was investigated for its potential as an antibacterial agent based on its activity against Gram-positive and Gram-negative bacteria. The antibacterial efficiency of M-HOF against <em>Pseudomonas aeruginosa</em> (PA01) at 60 μg/mL was found to be 99 % after 10 h. M-HOF’s cytotoxicity was tested against HMEC-1 (Human microvascular endothelial cell line) at various concentrations, demonstrating good biocompatibility. This scalable and low-cost synthesis of M-HOF has great potential to reduce the environmental impact of waste, and disease transmission and can be utilized in dressings and food packaging areas.</div></div>","PeriodicalId":100290,"journal":{"name":"Colloids and Surfaces C: Environmental Aspects","volume":"3 ","pages":"Article 100059"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces C: Environmental Aspects","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294975902500006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present investigation reported the hydrothermal synthesis of melamine-based hydrogen organic nanoframework (M-HOFs) with promising toxic metal ions adsorption properties along with antibacterial activity. FTIR, XRD, FESEM, BET, and NTA analyses were utilized to perform the characterization of the synthesized M-HOF. The nanosized (83 nm), mesoporous nature, and high surface area (∼ 1199.93 m²/g) are responsible for adsorption and enhanced antibacterial activity. The adsorption studies showed that M-HOF is sensitive to Pb2+ ions in an aqueous medium. The Pb2+ ions quenched the emission of M-HOF to the largest extent with the KSV value of 1.4099 × 104 M−1. The binding of Pb2+ ions leads to electronic changes in the structure of M-HOF. Additionally, M-HOF was investigated for its potential as an antibacterial agent based on its activity against Gram-positive and Gram-negative bacteria. The antibacterial efficiency of M-HOF against Pseudomonas aeruginosa (PA01) at 60 μg/mL was found to be 99 % after 10 h. M-HOF’s cytotoxicity was tested against HMEC-1 (Human microvascular endothelial cell line) at various concentrations, demonstrating good biocompatibility. This scalable and low-cost synthesis of M-HOF has great potential to reduce the environmental impact of waste, and disease transmission and can be utilized in dressings and food packaging areas.