Olena Tynkevych, Katarzyna Ryczek, Tomasz Kuciel, Leszek Zaraska
{"title":"Formation of ZrO2 with unusual morphology and Zr surface patterning via one-step anodization of zirconium in aqueous electrolyte","authors":"Olena Tynkevych, Katarzyna Ryczek, Tomasz Kuciel, Leszek Zaraska","doi":"10.1016/j.jmrt.2024.12.045","DOIUrl":null,"url":null,"abstract":"<div><div>A simple one-step anodization of Zr in aqueous electrolyte was employed for the fabrication of nanostructured ZrO<sub>2</sub> with various morphologies as well as for controllable nanostructuring of Zr metal surface. The Zr foils were anodized for various durations (10–30 min) at the constant potential from the range 10–50 V in an electrolyte containing 1 M (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> and 0.5% wt. NH<sub>4</sub>F at room temperature. The morphology of the obtained materials has been verified by SEM and AFM, and correlated in detail with anodizing conditions. Depending on the voltage applied during anodization, both nanotubular and nanoporous zirconia films with a thickness of up to 30 μm were successfully obtained. Moreover, the generation of nanostructured ZrO<sub>2</sub> with unusual morphology consisting of much larger channels/tubes within a “matrix” of narrower species was presented for the first time. Careful adjustment of anodizing conditions allowed for the formation of free-standing and mechanically stable zirconia films without the need for any post-treatment procedures like potential shock or cathodic polarization. Finally, the procedure of Zr anodization was also found to be an effective strategy for the generation of nanosized patterns with precisely defined morphologies on the metal surface.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"34 ","pages":"Pages 100-109"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424028485","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A simple one-step anodization of Zr in aqueous electrolyte was employed for the fabrication of nanostructured ZrO2 with various morphologies as well as for controllable nanostructuring of Zr metal surface. The Zr foils were anodized for various durations (10–30 min) at the constant potential from the range 10–50 V in an electrolyte containing 1 M (NH4)2SO4 and 0.5% wt. NH4F at room temperature. The morphology of the obtained materials has been verified by SEM and AFM, and correlated in detail with anodizing conditions. Depending on the voltage applied during anodization, both nanotubular and nanoporous zirconia films with a thickness of up to 30 μm were successfully obtained. Moreover, the generation of nanostructured ZrO2 with unusual morphology consisting of much larger channels/tubes within a “matrix” of narrower species was presented for the first time. Careful adjustment of anodizing conditions allowed for the formation of free-standing and mechanically stable zirconia films without the need for any post-treatment procedures like potential shock or cathodic polarization. Finally, the procedure of Zr anodization was also found to be an effective strategy for the generation of nanosized patterns with precisely defined morphologies on the metal surface.
期刊介绍:
The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.