Geophysical characterization of the in-situ CO2 mineral storage pilot site in Helguvik, Iceland

IF 4.6 3区 工程技术 Q2 ENERGY & FUELS International Journal of Greenhouse Gas Control Pub Date : 2025-02-01 DOI:10.1016/j.ijggc.2025.104320
Jonas Simon Junker , Anne Obermann , Martin Voigt , Hansruedi Maurer , Ovie Emmanuel Eruteya , Andrea Moscariello , Stefan Wiemer , Alba Zappone
{"title":"Geophysical characterization of the in-situ CO2 mineral storage pilot site in Helguvik, Iceland","authors":"Jonas Simon Junker ,&nbsp;Anne Obermann ,&nbsp;Martin Voigt ,&nbsp;Hansruedi Maurer ,&nbsp;Ovie Emmanuel Eruteya ,&nbsp;Andrea Moscariello ,&nbsp;Stefan Wiemer ,&nbsp;Alba Zappone","doi":"10.1016/j.ijggc.2025.104320","DOIUrl":null,"url":null,"abstract":"<div><div>In-situ CO<sub>2</sub> mineral storage is moving into focus as a technology for storing substantial amounts of CO<sub>2</sub> that would otherwise be released into the atmosphere. However, one of the main drawbacks of this technology is that it requires large amounts of freshwater for injection. To overcome this obstacle, a pilot project in Helguvik, Iceland is testing the effectiveness of carbon mineralization using saline water, similar to seawater. Here, we describe the project and the geophysical characterization of the pilot site using crosshole seismic- and single-hole electrical resistivity measurements. The data show that the subsurface strata are dominated by decameter-thick horizontal layers of basaltic strata, with varying seismic velocities and electrical resistivities. Variations in both seismic velocity and electrical resistivity are in excellent agreement and delineate high and low porosity zones in the subsurface. The results are compared to well logging results and the mineralogical composition of drill cuttings to build a comprehensive subsurface model of the future CO<sub>2</sub> mineral storage reservoir, highlighting potential pathways for the injected CO<sub>2</sub>-charged waters.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"141 ","pages":"Article 104320"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583625000180","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In-situ CO2 mineral storage is moving into focus as a technology for storing substantial amounts of CO2 that would otherwise be released into the atmosphere. However, one of the main drawbacks of this technology is that it requires large amounts of freshwater for injection. To overcome this obstacle, a pilot project in Helguvik, Iceland is testing the effectiveness of carbon mineralization using saline water, similar to seawater. Here, we describe the project and the geophysical characterization of the pilot site using crosshole seismic- and single-hole electrical resistivity measurements. The data show that the subsurface strata are dominated by decameter-thick horizontal layers of basaltic strata, with varying seismic velocities and electrical resistivities. Variations in both seismic velocity and electrical resistivity are in excellent agreement and delineate high and low porosity zones in the subsurface. The results are compared to well logging results and the mineralogical composition of drill cuttings to build a comprehensive subsurface model of the future CO2 mineral storage reservoir, highlighting potential pathways for the injected CO2-charged waters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
10.30%
发文量
199
审稿时长
4.8 months
期刊介绍: The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.
期刊最新文献
Editorial Board Evaluating the regional geological characteristics of the St. Peter Sandstone and Everton Formation for CO2 storage in Southern Illinois: A case study on site-specific injection feasibility in Washington County, Illinois Feasibility, conditions, and opportunities for achieving net-negative emissions in the global cement industry Water-alternating-gas injections for optimized mineral carbon storage in basalt Biomass and coal cofiring gasification with pre-combustion carbon capture: Impact of mixed feedstocks on CO2 absorption using a physical solvent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1