Samuel J. Jackson, James Gunning, Jonathan Ennis-King, Tess Dance, Charles Jenkins
{"title":"Towards industrial deployment of pressure tomography for CO2 storage monitoring: Uncertainty and megatonne scale-up","authors":"Samuel J. Jackson, James Gunning, Jonathan Ennis-King, Tess Dance, Charles Jenkins","doi":"10.1016/j.ijggc.2024.104299","DOIUrl":null,"url":null,"abstract":"<div><div>Pressure tomography was successfully demonstrated as a viable CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage monitoring technique in the Otway Stage 3 field project. In this work, we build on the initial pilot demonstration, using the results to assess megatonne-scale industrial deployment. Firstly, we develop an uncertainty analysis approach which facilitates risk-based decision making. We present a Bayesian model averaging approach which estimates statistical bounds on the estimated CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> plume footprints for each monitor survey, and delineates the increasing confidence in the plume locatability as more CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is injected. To facilitate well-array design at other sites, we demonstrate the use of a gate system; a single well-pair to monitor encroaching CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which could be useful for key-risk areas such as spill-points or fault regions. Finally, non-dimensional analysis reveals the key control of the well separation, <span><math><mi>r</mi></math></span>, in operational design; the minimum water injection time scales with <span><math><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and peak-pressure scales with <span><math><mrow><mn>1</mn><mo>/</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. Realistic well separations <span><math><mo><</mo></math></span>2 km are found to be desirable, which is adequate to capture key migration pathways and risk areas in most megatonne-scale industrial operations.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"141 ","pages":"Article 104299"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624002421","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Pressure tomography was successfully demonstrated as a viable CO storage monitoring technique in the Otway Stage 3 field project. In this work, we build on the initial pilot demonstration, using the results to assess megatonne-scale industrial deployment. Firstly, we develop an uncertainty analysis approach which facilitates risk-based decision making. We present a Bayesian model averaging approach which estimates statistical bounds on the estimated CO plume footprints for each monitor survey, and delineates the increasing confidence in the plume locatability as more CO is injected. To facilitate well-array design at other sites, we demonstrate the use of a gate system; a single well-pair to monitor encroaching CO, which could be useful for key-risk areas such as spill-points or fault regions. Finally, non-dimensional analysis reveals the key control of the well separation, , in operational design; the minimum water injection time scales with , and peak-pressure scales with . Realistic well separations 2 km are found to be desirable, which is adequate to capture key migration pathways and risk areas in most megatonne-scale industrial operations.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.