SiC incorporation effects on AlFeCrNiTi high entropy alloy morphology, mechanical and corrosion properties

IF 4.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Intermetallics Pub Date : 2025-02-01 DOI:10.1016/j.intermet.2024.108583
Zahra Shojaei, Gholam Reza Khayati, Esmaeel Darezereshki
{"title":"SiC incorporation effects on AlFeCrNiTi high entropy alloy morphology, mechanical and corrosion properties","authors":"Zahra Shojaei,&nbsp;Gholam Reza Khayati,&nbsp;Esmaeel Darezereshki","doi":"10.1016/j.intermet.2024.108583","DOIUrl":null,"url":null,"abstract":"<div><div>Using pulse electrodeposition method on copper substrates, AlFeCrNiTi high entropy alloy (HEA) coatings were successfully applied with various concentrations of silicon carbide (0, 10, 15 and 20 g/L) in the coating bath as reinforcement. Various techniques were used to investigate the created structure and its properties, including morphology, chemical composition, phase analysis, microhardness, corrosion, and wear. In the presence of silicon carbide particles, the coatings had a spherical morphology. The formation of HEA was confirmed by EDS, XRD, and thermodynamic calculations, which showed that the solid solution formed without silicon carbide and with silicon carbide was FCC + BCC and BCC respectively. Furthermore, the results of mechanical and corrosion properties showed that the fineness of the grains improved microhardness and wear resistance, and due to the formation of a continuous passive layer caused by silicon carbide powder, the corrosion current density in 3.5 wt% NaCl solution decreased to 0.79 A/cm<sup>2</sup> and the charge transfer resistance increased to 6810 Ω cm<sup>2</sup>. Also, the sample with a concentration of 20 g/L of silicon carbide in the coating bath has better mechanical and corrosion properties than other samples.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"177 ","pages":"Article 108583"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524004023","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Using pulse electrodeposition method on copper substrates, AlFeCrNiTi high entropy alloy (HEA) coatings were successfully applied with various concentrations of silicon carbide (0, 10, 15 and 20 g/L) in the coating bath as reinforcement. Various techniques were used to investigate the created structure and its properties, including morphology, chemical composition, phase analysis, microhardness, corrosion, and wear. In the presence of silicon carbide particles, the coatings had a spherical morphology. The formation of HEA was confirmed by EDS, XRD, and thermodynamic calculations, which showed that the solid solution formed without silicon carbide and with silicon carbide was FCC + BCC and BCC respectively. Furthermore, the results of mechanical and corrosion properties showed that the fineness of the grains improved microhardness and wear resistance, and due to the formation of a continuous passive layer caused by silicon carbide powder, the corrosion current density in 3.5 wt% NaCl solution decreased to 0.79 A/cm2 and the charge transfer resistance increased to 6810 Ω cm2. Also, the sample with a concentration of 20 g/L of silicon carbide in the coating bath has better mechanical and corrosion properties than other samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SiC掺入对AlFeCrNiTi高熵合金形貌、力学性能和腐蚀性能的影响
采用脉冲电沉积方法,在铜基体上成功制备了AlFeCrNiTi高熵合金(HEA)涂层,并在镀液中加入不同浓度的碳化硅(0、10、15和20 g/L)作为增强剂。使用了各种技术来研究所创建的结构及其性能,包括形貌,化学成分,相分析,显微硬度,腐蚀和磨损。在碳化硅颗粒的存在下,涂层具有球形形貌。通过EDS、XRD和热力学计算证实了HEA的形成,结果表明:不含碳化硅和含碳化硅形成的固溶体分别为FCC + BCC和BCC。力学性能和腐蚀性能结果表明,晶粒细度提高了合金的显微硬度和耐磨性,并且由于碳化硅粉末形成连续钝化层,在3.5 wt% NaCl溶液中的腐蚀电流密度降低到0.79 a /cm2,电荷转移电阻增加到6810 Ω cm2。涂层液中碳化硅浓度为20 g/L的样品具有较好的机械性能和腐蚀性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
期刊最新文献
Editorial Board Study on elastic properties, fracture toughness, electronic properties and thermal conductivity of the M-Mg(ZnAlCu)2 phase in aluminum alloys via first-principles calculations and experiments Synergistic strengthening and microstructure evolution of laser-cladded CoCrFeNiWx high-entropy alloy coatings with enhanced thermal fatigue and wear resistance Achieving synergistic enhancement of wear resistance and plasticity in (TiB+Ti5Si3)/TC4 composites with dual quasi-continuous network structure via reinforcement content control Microstructure and hydrogen sorption of severely deformed TaTiVCrFe and ZrTiVCrFe refractory high-entropy alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1