Understanding bus delay patterns under different temporal and weather conditions: A Bayesian Gaussian mixture model

IF 7.6 1区 工程技术 Q1 TRANSPORTATION SCIENCE & TECHNOLOGY Transportation Research Part C-Emerging Technologies Pub Date : 2025-02-01 DOI:10.1016/j.trc.2025.105000
Xiaoxu Chen , Saeid Saidi , Lijun Sun
{"title":"Understanding bus delay patterns under different temporal and weather conditions: A Bayesian Gaussian mixture model","authors":"Xiaoxu Chen ,&nbsp;Saeid Saidi ,&nbsp;Lijun Sun","doi":"10.1016/j.trc.2025.105000","DOIUrl":null,"url":null,"abstract":"<div><div>In public transit systems, bus delays significantly impact service reliability and passenger satisfaction. Causal delays, consisting of link running and stop dwell delays, are critical factors contributing to overall bus delay patterns. This paper develops a Bayesian probabilistic model to analyze bus delay patterns with a focus on causal delays under varying weather and temporal conditions, which can help to understand how the underlying causal delay patterns contribute to arrival delay patterns. Employing a Gaussian mixture model integrated with a topic model approach, the study analyzes causal delays as multivariate random variables, capturing the influence of temporal and weather conditions on bus service reliability. For model inference, we propose a Markov Chain Monte Carlo (MCMC) sampling method to estimate the model parameters. The analysis is conducted using real-world data from a bus route in Calgary, Canada. We categorize the identified delay patterns into four on-time categories: extreme earliness, moderate earliness, extreme lateness, and moderate lateness. Results indicate that adverse weather significantly influences extreme delay patterns in particular, suggesting the necessity for transit agencies to consider these factors in schedule optimization. Beyond pattern identification, the proposed model offers probabilistic delay estimation, enabling accurate forecasting of future delays based on current conditions and observations. Validation results demonstrate that our probabilistic estimates align closely with observed data, proving the model’s practical applicability in real-time operations and offering actionable insights to enhance the punctuality and efficiency of urban bus services.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"171 ","pages":"Article 105000"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X2500004X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In public transit systems, bus delays significantly impact service reliability and passenger satisfaction. Causal delays, consisting of link running and stop dwell delays, are critical factors contributing to overall bus delay patterns. This paper develops a Bayesian probabilistic model to analyze bus delay patterns with a focus on causal delays under varying weather and temporal conditions, which can help to understand how the underlying causal delay patterns contribute to arrival delay patterns. Employing a Gaussian mixture model integrated with a topic model approach, the study analyzes causal delays as multivariate random variables, capturing the influence of temporal and weather conditions on bus service reliability. For model inference, we propose a Markov Chain Monte Carlo (MCMC) sampling method to estimate the model parameters. The analysis is conducted using real-world data from a bus route in Calgary, Canada. We categorize the identified delay patterns into four on-time categories: extreme earliness, moderate earliness, extreme lateness, and moderate lateness. Results indicate that adverse weather significantly influences extreme delay patterns in particular, suggesting the necessity for transit agencies to consider these factors in schedule optimization. Beyond pattern identification, the proposed model offers probabilistic delay estimation, enabling accurate forecasting of future delays based on current conditions and observations. Validation results demonstrate that our probabilistic estimates align closely with observed data, proving the model’s practical applicability in real-time operations and offering actionable insights to enhance the punctuality and efficiency of urban bus services.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.80
自引率
12.00%
发文量
332
审稿时长
64 days
期刊介绍: Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.
期刊最新文献
A probabilistic approach for queue length estimation using license plate recognition data: Considering overtaking in multi-lane scenarios Virtual car following based cooperative control of connected automated vehicles in complex scenarios: A roundabout example Environmental impacts and emission reduction methods of vehicles equipped with driving automation systems: An operational-level review Editorial Board Deep imitative reinforcement learning with gradient conflict-free for decision-making in autonomous vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1