Sneha Pokharkar , Mahesh D. Goudar , Vrushali Waghmare
{"title":"An MPPT integrated DC-DC boost converter for solar energy harvester using LPWHO approach","authors":"Sneha Pokharkar , Mahesh D. Goudar , Vrushali Waghmare","doi":"10.1016/j.suscom.2024.101076","DOIUrl":null,"url":null,"abstract":"<div><div>Due to high maintenance costs and inaccessibility, replacing batteries regularly is a major difficulty for Wireless Sensor Nodes (WSNs) in remote locations. Harvesting energy from multiple resources like sun, wind, thermal, and vibration is one option. Because of its plentiful availability, solar energy harvesting is the finest alternative among them. The battery gets charged during the day by solar energy, and while solar energy is unavailable, the system is powered by the charge stored in the battery. Hence, in this paper, a highly efficient Solar Energy Harvesting (SEH) system is proposed using Leadership Promoted Wild Horse Optimizer (LPWHO). LPWHO refers to the conceptual improvement of the standard Wild Horse optimization (WHO) algorithm. This research is going to focus on overall harvesting efficiency which further depends on MPPT. MPPT is used as it extracts maximal power from the solar panels and reduces power loss. The usage of MPPT enhances the extracted power’s efficiency out of the solar panel when its voltages are out of sync. At last, the supremacy of the presented approach is proved with respect to varied measures.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"45 ","pages":"Article 101076"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537924001215","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Due to high maintenance costs and inaccessibility, replacing batteries regularly is a major difficulty for Wireless Sensor Nodes (WSNs) in remote locations. Harvesting energy from multiple resources like sun, wind, thermal, and vibration is one option. Because of its plentiful availability, solar energy harvesting is the finest alternative among them. The battery gets charged during the day by solar energy, and while solar energy is unavailable, the system is powered by the charge stored in the battery. Hence, in this paper, a highly efficient Solar Energy Harvesting (SEH) system is proposed using Leadership Promoted Wild Horse Optimizer (LPWHO). LPWHO refers to the conceptual improvement of the standard Wild Horse optimization (WHO) algorithm. This research is going to focus on overall harvesting efficiency which further depends on MPPT. MPPT is used as it extracts maximal power from the solar panels and reduces power loss. The usage of MPPT enhances the extracted power’s efficiency out of the solar panel when its voltages are out of sync. At last, the supremacy of the presented approach is proved with respect to varied measures.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.