Enhancing economic and environmental performance of energy communities: A multi-objective optimization approach with mountain gazelle optimizer

IF 3.8 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Sustainable Computing-Informatics & Systems Pub Date : 2025-02-06 DOI:10.1016/j.suscom.2025.101098
Hong Zheng , Zhixin Wu
{"title":"Enhancing economic and environmental performance of energy communities: A multi-objective optimization approach with mountain gazelle optimizer","authors":"Hong Zheng ,&nbsp;Zhixin Wu","doi":"10.1016/j.suscom.2025.101098","DOIUrl":null,"url":null,"abstract":"<div><div>This research explores three distinct configurations of energy communities, collectives of local consumers utilizing renewable electrical and thermal energy. The study aims to enhance economic outcomes while addressing climate change and meeting energy demands through advanced strategies. The optimization framework focuses on refining the design, capacity, and efficiency of energy conversion and storage systems, balancing investment and operational costs with greenhouse gas emissions (GhGE) across their lifecycle. Two innovative demand-side management (DSM) strategies are introduced: a downstream pricing-based demand response program (DRP) and an upstream DSM model aligning electricity demand with locally available renewable energy. The study employs a multi-objective modeling approach using the novel mountain gazelle optimizer (MGO), which integrates fuzzy theory and Pareto optimization to minimize costs and emissions. Results demonstrate significant benefits of the proposed DSM strategies. DSM 2 enhances self-consumption rates by approximately 17 % for individual prosumers (IP) and 14–17 % for energy communities, while DSM 1 effectively reduces grid exchanges by 9 % for prosumers and up to 17 % for energy communities. The optimization framework also facilitates a more balanced distribution of generation and demand, alleviating grid stress. These findings underscore the potential of integrated DSM strategies and multi-objective optimization in advancing the performance and sustainability of renewable energy systems, offering diverse advantages in self-consumption and grid interaction.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"46 ","pages":"Article 101098"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000186","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This research explores three distinct configurations of energy communities, collectives of local consumers utilizing renewable electrical and thermal energy. The study aims to enhance economic outcomes while addressing climate change and meeting energy demands through advanced strategies. The optimization framework focuses on refining the design, capacity, and efficiency of energy conversion and storage systems, balancing investment and operational costs with greenhouse gas emissions (GhGE) across their lifecycle. Two innovative demand-side management (DSM) strategies are introduced: a downstream pricing-based demand response program (DRP) and an upstream DSM model aligning electricity demand with locally available renewable energy. The study employs a multi-objective modeling approach using the novel mountain gazelle optimizer (MGO), which integrates fuzzy theory and Pareto optimization to minimize costs and emissions. Results demonstrate significant benefits of the proposed DSM strategies. DSM 2 enhances self-consumption rates by approximately 17 % for individual prosumers (IP) and 14–17 % for energy communities, while DSM 1 effectively reduces grid exchanges by 9 % for prosumers and up to 17 % for energy communities. The optimization framework also facilitates a more balanced distribution of generation and demand, alleviating grid stress. These findings underscore the potential of integrated DSM strategies and multi-objective optimization in advancing the performance and sustainability of renewable energy systems, offering diverse advantages in self-consumption and grid interaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Computing-Informatics & Systems
Sustainable Computing-Informatics & Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTUREC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
10.70
自引率
4.40%
发文量
142
期刊介绍: Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.
期刊最新文献
Novel sustainable green transportation: A neutrosophic multi-objective model considering various factors in logistics Federated learning at the edge in Industrial Internet of Things: A review Enhancing economic and environmental performance of energy communities: A multi-objective optimization approach with mountain gazelle optimizer Energy consumption and workload prediction for edge nodes in the Computing Continuum Secured Energy Efficient Chaotic Gazelle based Optimized Routing Protocol in mobile ad-hoc network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1