Leonardo M. De Marco , Jorge Otávio Trierweiler , Fábio César Diehl , Marcelo Farenzena
{"title":"Input-Output Cross Autocorrelation Diagram (IO-CAD) for control loop performance assessment in offshore oil production","authors":"Leonardo M. De Marco , Jorge Otávio Trierweiler , Fábio César Diehl , Marcelo Farenzena","doi":"10.1016/j.jprocont.2024.103345","DOIUrl":null,"url":null,"abstract":"<div><div>Severe slugging is a prevalent issue in offshore oil wells that significantly hampers oil production. While active pressure control has proven effective in mitigating this problem, determining optimal setpoints remains a manual and labor-intensive procedure. This study introduces the Input-Output Cross Autocorrelation Diagram (IO-CAD), which examines both input and output autocorrelations to provide a more comprehensive assessment of control loops compared to previous methods that only use output autocorrelation data. Four indicators based on IO-CAD were developed and tested in two case studies involving offshore oil production. They were compared to an oscillation detection method published in the literature, as oscillations in the control loop may indicate the slugging flow. Early detection of slugging patterns is crucial in offshore oil production to prevent severe slugging and stabilize control loops. The results demonstrated that the IO-CAD indicators are robust against setpoint changes, disturbances, and noise in the control loop performance assessment, while the oscillation detection method from the literature is sensitive to measurement and process noise, as well as control loop oscillations.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"145 ","pages":"Article 103345"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424001859","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Severe slugging is a prevalent issue in offshore oil wells that significantly hampers oil production. While active pressure control has proven effective in mitigating this problem, determining optimal setpoints remains a manual and labor-intensive procedure. This study introduces the Input-Output Cross Autocorrelation Diagram (IO-CAD), which examines both input and output autocorrelations to provide a more comprehensive assessment of control loops compared to previous methods that only use output autocorrelation data. Four indicators based on IO-CAD were developed and tested in two case studies involving offshore oil production. They were compared to an oscillation detection method published in the literature, as oscillations in the control loop may indicate the slugging flow. Early detection of slugging patterns is crucial in offshore oil production to prevent severe slugging and stabilize control loops. The results demonstrated that the IO-CAD indicators are robust against setpoint changes, disturbances, and noise in the control loop performance assessment, while the oscillation detection method from the literature is sensitive to measurement and process noise, as well as control loop oscillations.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.