Two-stage prediction of drift ratio limits of corroded RC columns based on interpretable machine learning methods

IF 6.2 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Developments in the Built Environment Pub Date : 2024-12-06 DOI:10.1016/j.dibe.2024.100588
Yan Zhou , Yizhi Qiu , Liuzhuo Chen
{"title":"Two-stage prediction of drift ratio limits of corroded RC columns based on interpretable machine learning methods","authors":"Yan Zhou ,&nbsp;Yizhi Qiu ,&nbsp;Liuzhuo Chen","doi":"10.1016/j.dibe.2024.100588","DOIUrl":null,"url":null,"abstract":"<div><div>RC columns exposed to harsh environments are susceptible to internal reinforcement corrosion, leading to a reduction in lateral deformation capacity. The accurate prediction of drift ratio limits (DRLs) for corroded RC columns (CRCCs) across various damage states is crucial for reliable damage assessment and seismic resilience analysis. Current literatures remain inadequate for predicting DRLs for CRCCs with diverse service life. To address this gap, this paper introduces a two-stage machine learning (ML) approach for the simultaneous prediction of DRLs in CRCCs, utilizing quasi-static test data from 290 corroded column specimens. In the first stage, a failure mode recognition model and a single-output DRL prediction model were developed using the XGBoost algorithm. This model is then combined with the SHAP method to facilitate feature importance ranking and model interpretability. Building on the insights gained from failure mode recognition and feature importance ranking in the first stage, a Deep Neural Network (DNN) was employed in the second stage to achieve multi-output prediction of DRLs. The findings indicate that the SHAP-based interpretable ML method offers profound understanding of the intricate associations between failure modes and DRLs, design parameters and corrosion rate. The proposed DNN model is capable of concurrently outputting multiple DRLs while balancing the accuracy and efficiency, and signifies a notable advancement beyond traditional methodologies for estimating the lateral deformation capacity of CRCCs.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"21 ","pages":"Article 100588"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924002692","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RC columns exposed to harsh environments are susceptible to internal reinforcement corrosion, leading to a reduction in lateral deformation capacity. The accurate prediction of drift ratio limits (DRLs) for corroded RC columns (CRCCs) across various damage states is crucial for reliable damage assessment and seismic resilience analysis. Current literatures remain inadequate for predicting DRLs for CRCCs with diverse service life. To address this gap, this paper introduces a two-stage machine learning (ML) approach for the simultaneous prediction of DRLs in CRCCs, utilizing quasi-static test data from 290 corroded column specimens. In the first stage, a failure mode recognition model and a single-output DRL prediction model were developed using the XGBoost algorithm. This model is then combined with the SHAP method to facilitate feature importance ranking and model interpretability. Building on the insights gained from failure mode recognition and feature importance ranking in the first stage, a Deep Neural Network (DNN) was employed in the second stage to achieve multi-output prediction of DRLs. The findings indicate that the SHAP-based interpretable ML method offers profound understanding of the intricate associations between failure modes and DRLs, design parameters and corrosion rate. The proposed DNN model is capable of concurrently outputting multiple DRLs while balancing the accuracy and efficiency, and signifies a notable advancement beyond traditional methodologies for estimating the lateral deformation capacity of CRCCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
1.20%
发文量
31
审稿时长
22 days
期刊介绍: Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.
期刊最新文献
Mapping the digital transformation of AEC industry: Content analysis of digital public policy in China Bias-aware degradation models for reinforced concrete bridges based on XAI Behavioral analysis of steel I-beams under repeated dynamic loads: Impact of various impactor head types Robotic assembly of modular concrete shells using falsework Development and evaluation of a maturity assessment tool for integrating building information modelling into operations and maintenance phase of buildings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1