Investigating synergistic effect of controlling hierarchical pore structure and chemical modification on CO2 adsorption kinetics of reduced graphene oxide aerogel

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Materials Today Sustainability Pub Date : 2025-01-07 DOI:10.1016/j.mtsust.2025.101073
Elahe Safaei , Zahra Talebi , Vahid Ghafarinia
{"title":"Investigating synergistic effect of controlling hierarchical pore structure and chemical modification on CO2 adsorption kinetics of reduced graphene oxide aerogel","authors":"Elahe Safaei ,&nbsp;Zahra Talebi ,&nbsp;Vahid Ghafarinia","doi":"10.1016/j.mtsust.2025.101073","DOIUrl":null,"url":null,"abstract":"<div><div>The hierarchical pore structure of amine-functionalized reduced graphene oxide aerogels (rGOAs) plays a vital role in CO₂ adsorption. Herein, the self-assembly of rGOAs was investigated by adjusting graphene oxide concentration and reduction time of hydrothermal, and the effect of the hierarchical pore structure on adsorption capacity, kinetics, and rate-limiting models were discussed. The highest CO₂ adsorption (2.7 mmol/g) was achieved under hydrothermal synthesis conditions of 2 mg/mL graphene oxide concentration over 10 h. This high adsorption is attributed to the enhancement in meso and micro surface areas, as indicated by BET results (169 and 152 m<sup>2</sup>/g, respectively), the presence of adequate macropores (FE-SEM results), the presence of heteroatoms (N and O) according to XPS, FTIR, and EDX results, and a high NH/N<sub>T</sub> (-NH- spectral area/total amine spectral areas) ratio of 0.35. Additionally, the highest structural defect (1.17) was observed in RAMAN results. The Elovich model demonstrates good agreement with experimental data, indicating heterogeneous CO₂ adsorption. The high S<sub>m</sub>/S<sub>T</sub> (micro surface area/micro + meso surface area) ratio (47%) and adequate macropores in the sample prepared with 2 mg/mL graphene oxide and 10 h, led to enhanced CO₂ physisorption. The high surface area increased the accessibility of active sites for chemisorption. The presence of macropores in this sample accelerates the mass transfer of CO₂ molecules, and the initial adsorption rate of the Elovich model (α = 0.032) is the highest. High graphene oxide concentration increased the surface barrier diffusion value due to decreased macropores. Intra-particle diffusion was identified as the rate-limiting kinetic model for CO₂ diffusion.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"29 ","pages":"Article 101073"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725000028","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The hierarchical pore structure of amine-functionalized reduced graphene oxide aerogels (rGOAs) plays a vital role in CO₂ adsorption. Herein, the self-assembly of rGOAs was investigated by adjusting graphene oxide concentration and reduction time of hydrothermal, and the effect of the hierarchical pore structure on adsorption capacity, kinetics, and rate-limiting models were discussed. The highest CO₂ adsorption (2.7 mmol/g) was achieved under hydrothermal synthesis conditions of 2 mg/mL graphene oxide concentration over 10 h. This high adsorption is attributed to the enhancement in meso and micro surface areas, as indicated by BET results (169 and 152 m2/g, respectively), the presence of adequate macropores (FE-SEM results), the presence of heteroatoms (N and O) according to XPS, FTIR, and EDX results, and a high NH/NT (-NH- spectral area/total amine spectral areas) ratio of 0.35. Additionally, the highest structural defect (1.17) was observed in RAMAN results. The Elovich model demonstrates good agreement with experimental data, indicating heterogeneous CO₂ adsorption. The high Sm/ST (micro surface area/micro + meso surface area) ratio (47%) and adequate macropores in the sample prepared with 2 mg/mL graphene oxide and 10 h, led to enhanced CO₂ physisorption. The high surface area increased the accessibility of active sites for chemisorption. The presence of macropores in this sample accelerates the mass transfer of CO₂ molecules, and the initial adsorption rate of the Elovich model (α = 0.032) is the highest. High graphene oxide concentration increased the surface barrier diffusion value due to decreased macropores. Intra-particle diffusion was identified as the rate-limiting kinetic model for CO₂ diffusion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
期刊最新文献
Xanthan gum biopolymer for uniform dispersion of halloysite nanotubes to enhance micro- and macroscopic performance of cementitious composite: A sustainable alternative to chemical surfactants Sustainable CFRP drilling using support plates: A comprehensive analysis of delamination suppression and cost-effectiveness Trends and perspectives on bacterial nanocellulose: A comprehensive analysis from the three helixes of innovation Enhancing high ionic conductivity of polyacryamide/hemp cellulose nanofibers for utilizing as quasi solid electrolyte composites in flexible rechargeable zinc-ion battery with high-safety One-step calcination strategy of 3D printing CuO–ZnO–ZrO2 catalysts for CO2 hydrogenation using digital light processing (DLP)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1