Modeling anisotropic dark energy self-gravitating stars satisfying the Karmarkar condition

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Annals of Physics Pub Date : 2025-01-07 DOI:10.1016/j.aop.2025.169921
Z. Yousaf , S. Khan , Mansour Shrahili , A. Malik , M.Z. Bhatti
{"title":"Modeling anisotropic dark energy self-gravitating stars satisfying the Karmarkar condition","authors":"Z. Yousaf ,&nbsp;S. Khan ,&nbsp;Mansour Shrahili ,&nbsp;A. Malik ,&nbsp;M.Z. Bhatti","doi":"10.1016/j.aop.2025.169921","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces a simplified model of static, spherical stellar systems interacting with anisotropic dark energy, using the Buchdahl model as the background metric potential. The notion of cosmic dark energy may serve as a potential mechanism to counteract the relativistic gravitational collapse of stellar distributions into singularities. Dark energy plays a vital role in shaping the cosmos on the largest scales, as it is the driving force behind the observed accelerated expansion. Therefore, it is reasonable to think that dark energy influences the kinematics of gravitationally bound stellar structures (Sakti and Sulaksono, 2021) [65]. Motivated by this, we introduce a self-gravitating stellar system model under the influence of dark energy, which incorporates both dark and ordinary matter. The model assumes a direct proportionality between the dark energy density and the perfect fluid density. We will then analyze the astrophysical features, including the regularity of the metric variables, density, pressure, mass–radius relationship, stability, dark energy parameters, and equilibrium conditions associated with the model. The model is promising due to its adherence to energy conditions and lack of a central singularity. By examining a mass–radius diagram, we have found the maximum mass limit for this type of star. Our results show that our suggested model corresponds to a feasible and physically realistic star structure that satisfies all stability criteria.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"474 ","pages":"Article 169921"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491625000028","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a simplified model of static, spherical stellar systems interacting with anisotropic dark energy, using the Buchdahl model as the background metric potential. The notion of cosmic dark energy may serve as a potential mechanism to counteract the relativistic gravitational collapse of stellar distributions into singularities. Dark energy plays a vital role in shaping the cosmos on the largest scales, as it is the driving force behind the observed accelerated expansion. Therefore, it is reasonable to think that dark energy influences the kinematics of gravitationally bound stellar structures (Sakti and Sulaksono, 2021) [65]. Motivated by this, we introduce a self-gravitating stellar system model under the influence of dark energy, which incorporates both dark and ordinary matter. The model assumes a direct proportionality between the dark energy density and the perfect fluid density. We will then analyze the astrophysical features, including the regularity of the metric variables, density, pressure, mass–radius relationship, stability, dark energy parameters, and equilibrium conditions associated with the model. The model is promising due to its adherence to energy conditions and lack of a central singularity. By examining a mass–radius diagram, we have found the maximum mass limit for this type of star. Our results show that our suggested model corresponds to a feasible and physically realistic star structure that satisfies all stability criteria.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
期刊最新文献
Editorial Board A new approach for calculation of quasi-normal modes and topological charges of regular black holes Thermodynamics of rotating AdS black holes in Kaniadakis statistics Mixed-state density operator in a nonlinear quantum system: Erratum Preinflation: Quantum nature of space–time to explain dark energy and the cosmological parameter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1