Simon M.F. Zhang , Angus Gentle , Maryna Bilokur , Ning Song , Zhen Yang , Yajie Jiang , Hamish Teasdale , Raghavi Bhoopathy , Ivan Perez-Wurfl , Ziv Hameiri
{"title":"Temperature dependency of the optical properties of photovoltaic module component layers","authors":"Simon M.F. Zhang , Angus Gentle , Maryna Bilokur , Ning Song , Zhen Yang , Yajie Jiang , Hamish Teasdale , Raghavi Bhoopathy , Ivan Perez-Wurfl , Ziv Hameiri","doi":"10.1016/j.solmat.2024.113389","DOIUrl":null,"url":null,"abstract":"<div><div>Photovoltaic module performance in the field is strongly dependent on the optical properties of its component layers and the temperature dependencies of these properties. However, despite their importance, the temperature dependencies of the optical properties of many photovoltaic module components appear to have not been characterised. Hence, the assumptions regarding their optical stabilities at various temperatures have not been verified. In this study, a temperature-dependent spectrophotometry method is developed to enable this verification. The temperature dependencies of the optical properties of silicon nitride, ethylene vinyl acetate (EVA), and backsheets are characterised, and their impacts on module operations are quantified via ray-tracing simulations. It is concluded that (1) silicon nitride anti-reflection coatings are optically stable between room temperature and 85 °C, and (2) several temperature dependencies exist at different wavelengths in both EVA and backsheets, however, they do not have a significant impact on the module operation.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"282 ","pages":"Article 113389"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824007013","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Photovoltaic module performance in the field is strongly dependent on the optical properties of its component layers and the temperature dependencies of these properties. However, despite their importance, the temperature dependencies of the optical properties of many photovoltaic module components appear to have not been characterised. Hence, the assumptions regarding their optical stabilities at various temperatures have not been verified. In this study, a temperature-dependent spectrophotometry method is developed to enable this verification. The temperature dependencies of the optical properties of silicon nitride, ethylene vinyl acetate (EVA), and backsheets are characterised, and their impacts on module operations are quantified via ray-tracing simulations. It is concluded that (1) silicon nitride anti-reflection coatings are optically stable between room temperature and 85 °C, and (2) several temperature dependencies exist at different wavelengths in both EVA and backsheets, however, they do not have a significant impact on the module operation.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.