Qibin Zhuang , Zhiwen Chen , Yong Huang , Wei Xiao , Xin Liu , Qixiang Chen , Han Wang , Qinnan Chen , Gonghan He , Xinye Wu , Rui Zhu , Dezhi Wu
{"title":"Integration of laser-induction and electroless copper plating for flexible electronics","authors":"Qibin Zhuang , Zhiwen Chen , Yong Huang , Wei Xiao , Xin Liu , Qixiang Chen , Han Wang , Qinnan Chen , Gonghan He , Xinye Wu , Rui Zhu , Dezhi Wu","doi":"10.1016/j.surfin.2025.105953","DOIUrl":null,"url":null,"abstract":"<div><div>Integration of flexible conductive electrodes and components is a critical technology for advancing smart wearable electronics. However, the intricate fabrication process, mechanical mismatch, and weak interface bonding for electronics integration often hinder its practical application. Here, we report a facile strategy that combing laser-induced graphene and electroless copper plating to integrate high-performance planar and curved flexible circuits for human physiological signals monitoring. The laser-induced copper patterns and porous graphene serve as flexible electrodes and functional components, respectively. As a result, the laser-induced patterned copper exhibits excellent electrical conductivity (0.037 Ω/sq), electrical stability (∼2 % variation over 30 days) and a high interface bonding strength at the 5B level. As a demonstration, the copper conductors and graphene components achieve seamless integration within planar and curved flexible substrates. The integrated prototype device demonstrates superior conformability, ensuring precise signal detection. This method sheds a new light on high-performance wearable devices in physiological signal monitoring.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"59 ","pages":"Article 105953"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023025002147","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Integration of flexible conductive electrodes and components is a critical technology for advancing smart wearable electronics. However, the intricate fabrication process, mechanical mismatch, and weak interface bonding for electronics integration often hinder its practical application. Here, we report a facile strategy that combing laser-induced graphene and electroless copper plating to integrate high-performance planar and curved flexible circuits for human physiological signals monitoring. The laser-induced copper patterns and porous graphene serve as flexible electrodes and functional components, respectively. As a result, the laser-induced patterned copper exhibits excellent electrical conductivity (0.037 Ω/sq), electrical stability (∼2 % variation over 30 days) and a high interface bonding strength at the 5B level. As a demonstration, the copper conductors and graphene components achieve seamless integration within planar and curved flexible substrates. The integrated prototype device demonstrates superior conformability, ensuring precise signal detection. This method sheds a new light on high-performance wearable devices in physiological signal monitoring.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)