Transition metal-based MOFs for Fenton-like photocatalytic degradation of organic pollutants: Performance, stability, and biocompatibility

IF 9 Q1 ENVIRONMENTAL SCIENCES Environmental Chemistry and Ecotoxicology Pub Date : 2025-01-01 DOI:10.1016/j.enceco.2025.01.003
S.M. Tikhanova , Yu.A. Tishchenko , E.Yu. Stovpiaga , M. Timofeeva , D.V. Lipin , S.A. Povarov , V.A. Milichko , A.S. Timin , S.A. Shipilovskikh , V.I. Popkov
{"title":"Transition metal-based MOFs for Fenton-like photocatalytic degradation of organic pollutants: Performance, stability, and biocompatibility","authors":"S.M. Tikhanova ,&nbsp;Yu.A. Tishchenko ,&nbsp;E.Yu. Stovpiaga ,&nbsp;M. Timofeeva ,&nbsp;D.V. Lipin ,&nbsp;S.A. Povarov ,&nbsp;V.A. Milichko ,&nbsp;A.S. Timin ,&nbsp;S.A. Shipilovskikh ,&nbsp;V.I. Popkov","doi":"10.1016/j.enceco.2025.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient materials for water treatment is crucial to addressing global environmental challenges. In this study, transition metal-based metal-organic frameworks (MeBDC MOFs; Me = Fe, Co, Ni; BDC = benzene dicarboxylic acid) were synthesized via a solvothermal method and considered as dual-function photocatalysts for adsorption and removal of organic pollutant. Comprehensive physicochemical analysis of the developed samples was performed using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), energy-dispersive X-ray spectroscopy (EDX), fourier-transform infrared spectroscopy (FTIR), raman spectroscopy, N<sub>2</sub> adsorption-desorption isotherms (BET), and diffuse reflectance spectroscopy (DRS). The materials exhibited a high visible-light absorption with band gap energies of 1.76 eV (FeBDC), 3.08 eV (CoBDC), and 3.73 eV (NiBDC), BET surface areas of 28.2 m<sup>2</sup>/g (FeBDC), 74.3 m<sup>2</sup>/g (CoBDC), and 31.4 m<sup>2</sup>/g (NiBDC). Photocatalytic performance was evaluated using methylene blue (MB) degradation under visible-light irradiation containing both conventional and Fenton-like processes. FeBDC achieved a reaction rate constant of 0.2719 min<sup>−1</sup> with 50 mmol/L H₂O₂, outperforming other materials due to its superior visible-light absorption and catalytic activity, which justified its selection for more detailed mechanistic studies. The proposed mechanism involves ligand-to-metal charge transfer (LMCT) and Fe-driven generation of reactive oxygen species (ROS) such as hydroxyl radicals. <em>In vitro</em> studies conducted on human monocytes (THP-1), murine embryonic fibroblasts (MEF-NF), breast cancer cells (4T1), melanoma cells (B16-F10), and colorectal cancer cells (CT26) demonstrated high biocompatibility of the developed MOFs. By reducing reliance on toxic chemical treatments, this study highlights MeBDC MOFs as highly efficient, biocompatible, and sustainable photocatalysts, with significant potential for industrial and domestic water purification applications.</div></div>","PeriodicalId":100480,"journal":{"name":"Environmental Chemistry and Ecotoxicology","volume":"7 ","pages":"Pages 305-318"},"PeriodicalIF":9.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry and Ecotoxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590182625000037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient materials for water treatment is crucial to addressing global environmental challenges. In this study, transition metal-based metal-organic frameworks (MeBDC MOFs; Me = Fe, Co, Ni; BDC = benzene dicarboxylic acid) were synthesized via a solvothermal method and considered as dual-function photocatalysts for adsorption and removal of organic pollutant. Comprehensive physicochemical analysis of the developed samples was performed using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), energy-dispersive X-ray spectroscopy (EDX), fourier-transform infrared spectroscopy (FTIR), raman spectroscopy, N2 adsorption-desorption isotherms (BET), and diffuse reflectance spectroscopy (DRS). The materials exhibited a high visible-light absorption with band gap energies of 1.76 eV (FeBDC), 3.08 eV (CoBDC), and 3.73 eV (NiBDC), BET surface areas of 28.2 m2/g (FeBDC), 74.3 m2/g (CoBDC), and 31.4 m2/g (NiBDC). Photocatalytic performance was evaluated using methylene blue (MB) degradation under visible-light irradiation containing both conventional and Fenton-like processes. FeBDC achieved a reaction rate constant of 0.2719 min−1 with 50 mmol/L H₂O₂, outperforming other materials due to its superior visible-light absorption and catalytic activity, which justified its selection for more detailed mechanistic studies. The proposed mechanism involves ligand-to-metal charge transfer (LMCT) and Fe-driven generation of reactive oxygen species (ROS) such as hydroxyl radicals. In vitro studies conducted on human monocytes (THP-1), murine embryonic fibroblasts (MEF-NF), breast cancer cells (4T1), melanoma cells (B16-F10), and colorectal cancer cells (CT26) demonstrated high biocompatibility of the developed MOFs. By reducing reliance on toxic chemical treatments, this study highlights MeBDC MOFs as highly efficient, biocompatible, and sustainable photocatalysts, with significant potential for industrial and domestic water purification applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.40
自引率
0.00%
发文量
0
期刊最新文献
Sorption and diffusion studies of radiocesium in soil samples from Ibu Kota Nusantara region of Indonesia Transition metal-based MOFs for Fenton-like photocatalytic degradation of organic pollutants: Performance, stability, and biocompatibility Microplastics as persistent and vectors of other threats in the marine environment: Toxicological impacts, management and strategical roadmap to end plastic pollution Fluorinated liquid crystal monomer (FLCM) induces kidney dysfunction by disrupting PPARα-mediated fatty acid oxidation: In vivo, in vitro, and in silico assays Fate of trace elements and emerging environmental pollutants (benzotriazoles and benzothiazoles) from a glacier-fed river in the mixing zone of an Arctic fjord system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1