Terahertz dual-band antenna design with improved performances using FSS-based metasurface concept for wireless applications

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES Scientific African Pub Date : 2025-01-22 DOI:10.1016/j.sciaf.2025.e02566
Youssef Amraoui , Imane Halkhams , Rachid El Alami , Mohammed Ouazzani Jamil , Hassan Qjidaa
{"title":"Terahertz dual-band antenna design with improved performances using FSS-based metasurface concept for wireless applications","authors":"Youssef Amraoui ,&nbsp;Imane Halkhams ,&nbsp;Rachid El Alami ,&nbsp;Mohammed Ouazzani Jamil ,&nbsp;Hassan Qjidaa","doi":"10.1016/j.sciaf.2025.e02566","DOIUrl":null,"url":null,"abstract":"<div><div>The suggested design makes use of the concept of a metasurface by including a Frequency Selective Surface (FSS) underneath the radiating element. This research paper aims to present the design and performance analysis of FSS embedded antennas with a special focus on the terahertz frequency band. The work reviews the electromagnetic theory of FSS structures and identifies some of the most important design parameters including the unit cell size and the choice of materials that define the performance of the antenna. Employing simulation software including CST, HFSS and ADS, the research output demonstrates the effects of FSS on the gain and efficiency of antenna systems. it is composed of a square loop metallic element with modified cross-shaped structures with a relative permittivity of 11.9 are positioned on a silicon dioxide substrate. To further boost the antenna's peak gain, the FSS is added 82 µm below the current THz antenna. The FSS construction has a total volume of 550 × 850 µm<sup>2</sup>. By appropriately integrating the FSS with the antenna construction and making use of its frequency-selective properties, gain enhancement can be achieved. Furthermore, circuit theory techniques have been used to study FSS structure and electrical equivalent circuits have been created to confirm their functionality. The intended frequency of operation for the FSS is 0.7 THz. The FSS antenna exhibits radiation efficiency of 85.59 % and 87.75 % at resonance frequencies of 600 GHz and 700 GHz, respectively. When we utilize FSS, the gain improves from 7.14 dBi to 8.36 dBi at 600 GHz and from 5.69 dBi to 6.79 dBi at 700 GHz. The smaller size of the dual-band structure adds to the compactness of the design, which can benefit applications requiring high-performance, dual-band operation. This demonstrates the advantages of FSS based solutions for advanced antenna systems in modern communication systems.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"27 ","pages":"Article e02566"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625000377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The suggested design makes use of the concept of a metasurface by including a Frequency Selective Surface (FSS) underneath the radiating element. This research paper aims to present the design and performance analysis of FSS embedded antennas with a special focus on the terahertz frequency band. The work reviews the electromagnetic theory of FSS structures and identifies some of the most important design parameters including the unit cell size and the choice of materials that define the performance of the antenna. Employing simulation software including CST, HFSS and ADS, the research output demonstrates the effects of FSS on the gain and efficiency of antenna systems. it is composed of a square loop metallic element with modified cross-shaped structures with a relative permittivity of 11.9 are positioned on a silicon dioxide substrate. To further boost the antenna's peak gain, the FSS is added 82 µm below the current THz antenna. The FSS construction has a total volume of 550 × 850 µm2. By appropriately integrating the FSS with the antenna construction and making use of its frequency-selective properties, gain enhancement can be achieved. Furthermore, circuit theory techniques have been used to study FSS structure and electrical equivalent circuits have been created to confirm their functionality. The intended frequency of operation for the FSS is 0.7 THz. The FSS antenna exhibits radiation efficiency of 85.59 % and 87.75 % at resonance frequencies of 600 GHz and 700 GHz, respectively. When we utilize FSS, the gain improves from 7.14 dBi to 8.36 dBi at 600 GHz and from 5.69 dBi to 6.79 dBi at 700 GHz. The smaller size of the dual-band structure adds to the compactness of the design, which can benefit applications requiring high-performance, dual-band operation. This demonstrates the advantages of FSS based solutions for advanced antenna systems in modern communication systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
期刊最新文献
Antimalarial activity of the aqueous extract and anthraquinones from the root of Senna siamea (LAM) H.S. Irwin & Barneby (Fabaceae). DockCADD: A streamlined in silico pipeline for the identification of potent ribosomal S6 Kinase 2 (RSK2) inhibitors Allometric models for estimating aboveground biomass and carbon stocks of the semi-arid savanna woody species, Detarium microcarpum Guill. et Perr. Nanocomposite treatment of hospital wastewater; Prophylaxis toxicity in the freshwater crayfish muscles and hepatopancreas Spatial epidemiology based on the analysis of COVID-19 in Africa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1