{"title":"Removal of heavy metal ions from wastewater using modified cornstalk cellulose-derived poly(amidoxime) ligand","authors":"Md Lutfor Rahman , Siti Aisyah Shamrih , Nurul Afifah Azlyzan , Mohd Sani Sarjadi , Sazmal Effendi Arsad , Shaheen M. Sarkar , Sandeep Kumar","doi":"10.1016/j.carpta.2024.100633","DOIUrl":null,"url":null,"abstract":"<div><div>The use of modified cellulose for the removal of heavy metal ions is a promising method to enhance the efficiency of metal ion extraction from water. In this study, cellulose was grafted with acrylonitrile to produce a polyacrylonitrile-grafted cellulose. This product was further converted into a poly(amidoxime) ligand through amidoximation. The structures of the cellulose, grafted cellulose, and poly(amidoxime) ligand were characterized using FT-IR, FE-SEM, and thermogravimetric analysis (TGA). A batch adsorption study was conducted to assess the polymer ligand's ability to adsorb heavy metal ions, including Cu²⁺, Fe²⁺, Co²⁺, Cr³⁺, and Ni²⁺. The poly(amidoxime) ligand demonstrated exceptional Cu²⁺ adsorption capacity, primarily due to the complexation of amidoxime functional groups, with a maximum adsorption capacity of 310 mg g⁻¹ at an optimal pH of 6. Adsorption behavior was found to be pH-dependent, with various metal concentrations tested at a constant pH of 6. The Cu²⁺ ions exhibited highest adsorption capacity, followed by Fe²⁺, Co²⁺, Cr³⁺, and Ni²⁺, with adsorption capacities of 280, 240, 220, and 205 mg g⁻¹, respectively. The adsorption isotherms were well described by the Freundlich model, showing a high correlation coefficient (R² > 0.99), indicating a heterogeneous adsorption surface capable of forming multiple layers on the polymer ligand. Additionally, the adsorption kinetics followed a pseudo-second-order model (R² > 0.997). This poly(amidoxime) ligand was able to remove 90–98 % of toxic metals from industrial wastewater, highlighting its potential for large-scale environmental applications. The development of poly(amidoxime) ligands from cellulosic materials offers a sustainable and eco-friendly approach to heavy metal ion extraction.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"9 ","pages":"Article 100633"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893924002135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The use of modified cellulose for the removal of heavy metal ions is a promising method to enhance the efficiency of metal ion extraction from water. In this study, cellulose was grafted with acrylonitrile to produce a polyacrylonitrile-grafted cellulose. This product was further converted into a poly(amidoxime) ligand through amidoximation. The structures of the cellulose, grafted cellulose, and poly(amidoxime) ligand were characterized using FT-IR, FE-SEM, and thermogravimetric analysis (TGA). A batch adsorption study was conducted to assess the polymer ligand's ability to adsorb heavy metal ions, including Cu²⁺, Fe²⁺, Co²⁺, Cr³⁺, and Ni²⁺. The poly(amidoxime) ligand demonstrated exceptional Cu²⁺ adsorption capacity, primarily due to the complexation of amidoxime functional groups, with a maximum adsorption capacity of 310 mg g⁻¹ at an optimal pH of 6. Adsorption behavior was found to be pH-dependent, with various metal concentrations tested at a constant pH of 6. The Cu²⁺ ions exhibited highest adsorption capacity, followed by Fe²⁺, Co²⁺, Cr³⁺, and Ni²⁺, with adsorption capacities of 280, 240, 220, and 205 mg g⁻¹, respectively. The adsorption isotherms were well described by the Freundlich model, showing a high correlation coefficient (R² > 0.99), indicating a heterogeneous adsorption surface capable of forming multiple layers on the polymer ligand. Additionally, the adsorption kinetics followed a pseudo-second-order model (R² > 0.997). This poly(amidoxime) ligand was able to remove 90–98 % of toxic metals from industrial wastewater, highlighting its potential for large-scale environmental applications. The development of poly(amidoxime) ligands from cellulosic materials offers a sustainable and eco-friendly approach to heavy metal ion extraction.