Impact of water plasticization on dialcohol cellulose fibres melt processing-structure-properties relationship

Enrica Pellegrino , Basel Al-Rudainy , Per A. Larsson , Alberto Fina , Giada Lo Re
{"title":"Impact of water plasticization on dialcohol cellulose fibres melt processing-structure-properties relationship","authors":"Enrica Pellegrino ,&nbsp;Basel Al-Rudainy ,&nbsp;Per A. Larsson ,&nbsp;Alberto Fina ,&nbsp;Giada Lo Re","doi":"10.1016/j.carpta.2024.100642","DOIUrl":null,"url":null,"abstract":"<div><div>Cellulose and its derivatives are considered sustainable alternatives to non-biodegradable fossil-based plastics. Chemically modified cellulose fibres to dialcohol cellulose (DAC) fibres demonstrated a melt processing window between the glass transition and degradation temperatures which enabled their extrusion by using only water as a temporary plasticizer. With the aim of supporting an industrial upscale of DAC fibres, this study investigates the processing design and the feasibility of melt processing, minimizing the moisture. Melt processes-structure-properties relationships were studied by varying the sequence of primary and secondary melt processes, <em>i.e.,</em> extrusion and injection moulding, and by changing the moisture content. The effect of moisture and processing design on the fibre structural properties, such as molecular weight, crystallinity, fibre morphology and fibre suspensions rheology, was assessed. Then, the thermomechanical behaviour of the 3D-shaped DAC injected materials was correlated with DAC fibres structural features obtained by the different processing design and moisture content. Our results identified the injection moulding as a milder process for achieving the preparation of 3D-shaped material with enhanced mechanical properties. Moreover, we disclosed the relevance of controlled moisture in the extrusion process for enabling a secondary shaping directly after compounding and the possibility of 3D-shaping DAC fibres after a rehydration step.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"9 ","pages":"Article 100642"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893924002226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Cellulose and its derivatives are considered sustainable alternatives to non-biodegradable fossil-based plastics. Chemically modified cellulose fibres to dialcohol cellulose (DAC) fibres demonstrated a melt processing window between the glass transition and degradation temperatures which enabled their extrusion by using only water as a temporary plasticizer. With the aim of supporting an industrial upscale of DAC fibres, this study investigates the processing design and the feasibility of melt processing, minimizing the moisture. Melt processes-structure-properties relationships were studied by varying the sequence of primary and secondary melt processes, i.e., extrusion and injection moulding, and by changing the moisture content. The effect of moisture and processing design on the fibre structural properties, such as molecular weight, crystallinity, fibre morphology and fibre suspensions rheology, was assessed. Then, the thermomechanical behaviour of the 3D-shaped DAC injected materials was correlated with DAC fibres structural features obtained by the different processing design and moisture content. Our results identified the injection moulding as a milder process for achieving the preparation of 3D-shaped material with enhanced mechanical properties. Moreover, we disclosed the relevance of controlled moisture in the extrusion process for enabling a secondary shaping directly after compounding and the possibility of 3D-shaping DAC fibres after a rehydration step.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Tailored biopolymer films based on cellulose acetate and cobalt ferrite nanoparticles: Dye adsorption and antimicrobial activity Amorphous calcium phosphate reinforced alginate-dialdehyde-gelatin (ADA-GEL) bioink for biofabrication of bone tissue scaffolds Carboxymethyl chitosan oligosaccharide prevents the progression of chronic kidney disease as a Nrf2-dependent apoptosis inhibitor Cellulose oligomer synthesis: Primer effects on structural characteristics in the cellodextrin phosphorylase-catalyzed reverse reaction Microwave assisted extraction of chitosan from Agaricus bisporus: techno-functional and microstructural properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1