Natural pozzolan as a sustainable cement replacement in high-performance concrete: Effects on mechanical properties, durability, and microstructural development

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES Scientific African Pub Date : 2025-01-30 DOI:10.1016/j.sciaf.2025.e02574
Yakoub Derrouiche , Djamel Achoura , Jacqueline Saliba , Franck Cassagnabère
{"title":"Natural pozzolan as a sustainable cement replacement in high-performance concrete: Effects on mechanical properties, durability, and microstructural development","authors":"Yakoub Derrouiche ,&nbsp;Djamel Achoura ,&nbsp;Jacqueline Saliba ,&nbsp;Franck Cassagnabère","doi":"10.1016/j.sciaf.2025.e02574","DOIUrl":null,"url":null,"abstract":"<div><div>High-Performance Concretes (HPC) play a crucial role in contemporary construction due to their exceptional strength and durability. However, the necessity for high cement content leads to considerable environmental and economic concerns. Consequently, there is an urgent need to explore more eco-friendly alternatives that can sustain the performance of HPC while meeting technical, economic, ecological, and sustainability requirements. One viable option is natural pozzolan (NP), which is abundantly available in many regions and can serve as a partial replacement for cement. . Algeria, for instance, has abundant and low-cost NP, which can significantly decrease clinker demand and enhance eco-concretes' performance. Our objective is to assess how partially substituting cement with NP with a replacement rate ranging from 0 % to 50 % affects the physical, mechanical behavior, and durability of Eco-HPC made with ternary binders. Experimental results indicate that eco-HPC, which includes up to 20 % NP, shows good performance. After 28 days, it achieves a compressive strength of 63.8 MPa, slightly lower than the control HPC's 68.5 MPa. In addition, its long-term strength development reached 84.4 MPa at 180 days compared to 78.2 MPa for the control HPC. Furthermore, the 20 % pozzolan mix demonstrates 15 % less total shrinkage at 180 days and a 25 % decrease in capillary water absorption when compared to the control mix, while retaining adequate workability. These results support the potential of using ternary binder systems with NP in creating eco-friendly HPC, achieving a good balance between environmental advantages and improved durability.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"27 ","pages":"Article e02574"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625000456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

High-Performance Concretes (HPC) play a crucial role in contemporary construction due to their exceptional strength and durability. However, the necessity for high cement content leads to considerable environmental and economic concerns. Consequently, there is an urgent need to explore more eco-friendly alternatives that can sustain the performance of HPC while meeting technical, economic, ecological, and sustainability requirements. One viable option is natural pozzolan (NP), which is abundantly available in many regions and can serve as a partial replacement for cement. . Algeria, for instance, has abundant and low-cost NP, which can significantly decrease clinker demand and enhance eco-concretes' performance. Our objective is to assess how partially substituting cement with NP with a replacement rate ranging from 0 % to 50 % affects the physical, mechanical behavior, and durability of Eco-HPC made with ternary binders. Experimental results indicate that eco-HPC, which includes up to 20 % NP, shows good performance. After 28 days, it achieves a compressive strength of 63.8 MPa, slightly lower than the control HPC's 68.5 MPa. In addition, its long-term strength development reached 84.4 MPa at 180 days compared to 78.2 MPa for the control HPC. Furthermore, the 20 % pozzolan mix demonstrates 15 % less total shrinkage at 180 days and a 25 % decrease in capillary water absorption when compared to the control mix, while retaining adequate workability. These results support the potential of using ternary binder systems with NP in creating eco-friendly HPC, achieving a good balance between environmental advantages and improved durability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
期刊最新文献
Allometric models for estimating aboveground biomass and carbon stocks of the semi-arid savanna woody species, Detarium microcarpum Guill. et Perr. Spatial epidemiology based on the analysis of COVID-19 in Africa Time-periodic dynamics in COVID-19 transmission considering the impact of population disbelief and fear Natural pozzolan as a sustainable cement replacement in high-performance concrete: Effects on mechanical properties, durability, and microstructural development Design and simulation of a 5 KW solar-powered hybrid electric vehicle charging station with a ANN–Kalman filter MPPT and MPC-based inverter control for reduced THD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1