Ingenious wheat starch/Lepidium perfoliatum seed mucilage hybrid composite films: Synthesis, incorporating nanostructured Dy2Ce2O7 synthesized via an ultrasound-assisted approach and characterization

Sahar Zinatloo-Ajabshir , Alireza Yousefi , Mario Jekle , Fariborz Sharifianjazi
{"title":"Ingenious wheat starch/Lepidium perfoliatum seed mucilage hybrid composite films: Synthesis, incorporating nanostructured Dy2Ce2O7 synthesized via an ultrasound-assisted approach and characterization","authors":"Sahar Zinatloo-Ajabshir ,&nbsp;Alireza Yousefi ,&nbsp;Mario Jekle ,&nbsp;Fariborz Sharifianjazi","doi":"10.1016/j.carpta.2024.100657","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, Dy<sub>2</sub>Ce<sub>2</sub>O<sub>7</sub> nanostructures were fabricated using an environmentally friendly, ultrasound-assisted method. These nanostructures were then incorporated into a blend of wheat starch (WS) and <em>Lepidium perfoliatum</em> seed mucilage (LPSM), along with sodium montmorillonite (Na-MMT) nanoparticles. The composite films were produced through a casting method, combining these components to enhance the films' structural and functional properties. FTIR results confirmed the chemical interactions between the NPs and the biopolymeric matrix of the nanocomposites. SEM surface morphology and XRD crystallography results indicated that up to a 1 % weight ratio, the dispersion of Dy<sub>2</sub>Ce<sub>2</sub>O<sub>7</sub> in the nanocomposite matrix was uniform, while at higher percentages, due to nanoparticle aggregation, crystallinity increased. Interestingly, the elongation of nanocomposites containing Dy<sub>2</sub>Ce<sub>2</sub>O<sub>7</sub> increased, while their tensile strength and elastic modulus decreased. More than 92 % of UV radiation in the 240–360 nm range was absorbed with the inclusion of 1 % wt. Dy<sub>2</sub>Ce<sub>2</sub>O<sub>7</sub>, and the water vapor permeability (WVP) significantly decreased. Among the Dy<sub>2</sub>Ce<sub>2</sub>O<sub>7</sub>-based nanocomposites, TGA results showed that the WS/LPSM/MMT/Dy1 % sample had the highest thermal stability. Overall, based on the results of this study, the WS/LPSM/MMT/Dy1 % sample was introduced as a composite film with suitable physicochemical and mechanical properties for food and pharmaceutical packaging.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"9 ","pages":"Article 100657"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893924002378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, Dy2Ce2O7 nanostructures were fabricated using an environmentally friendly, ultrasound-assisted method. These nanostructures were then incorporated into a blend of wheat starch (WS) and Lepidium perfoliatum seed mucilage (LPSM), along with sodium montmorillonite (Na-MMT) nanoparticles. The composite films were produced through a casting method, combining these components to enhance the films' structural and functional properties. FTIR results confirmed the chemical interactions between the NPs and the biopolymeric matrix of the nanocomposites. SEM surface morphology and XRD crystallography results indicated that up to a 1 % weight ratio, the dispersion of Dy2Ce2O7 in the nanocomposite matrix was uniform, while at higher percentages, due to nanoparticle aggregation, crystallinity increased. Interestingly, the elongation of nanocomposites containing Dy2Ce2O7 increased, while their tensile strength and elastic modulus decreased. More than 92 % of UV radiation in the 240–360 nm range was absorbed with the inclusion of 1 % wt. Dy2Ce2O7, and the water vapor permeability (WVP) significantly decreased. Among the Dy2Ce2O7-based nanocomposites, TGA results showed that the WS/LPSM/MMT/Dy1 % sample had the highest thermal stability. Overall, based on the results of this study, the WS/LPSM/MMT/Dy1 % sample was introduced as a composite film with suitable physicochemical and mechanical properties for food and pharmaceutical packaging.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Tailored biopolymer films based on cellulose acetate and cobalt ferrite nanoparticles: Dye adsorption and antimicrobial activity Amorphous calcium phosphate reinforced alginate-dialdehyde-gelatin (ADA-GEL) bioink for biofabrication of bone tissue scaffolds Carboxymethyl chitosan oligosaccharide prevents the progression of chronic kidney disease as a Nrf2-dependent apoptosis inhibitor Cellulose oligomer synthesis: Primer effects on structural characteristics in the cellodextrin phosphorylase-catalyzed reverse reaction Microwave assisted extraction of chitosan from Agaricus bisporus: techno-functional and microstructural properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1