A Bayesian best-worst approach with blockchain integration for optimizing supply chain efficiency through supplier selection

Azam Modares , Vahideh Bafandegan Emroozi , Pardis Roozkhosh , Azade Modares
{"title":"A Bayesian best-worst approach with blockchain integration for optimizing supply chain efficiency through supplier selection","authors":"Azam Modares ,&nbsp;Vahideh Bafandegan Emroozi ,&nbsp;Pardis Roozkhosh ,&nbsp;Azade Modares","doi":"10.1016/j.sca.2024.100100","DOIUrl":null,"url":null,"abstract":"<div><div>Supplier selection is a complex Multi-Criteria Decision-Making (MCDM) problem where decision-maker (DM) preferences heavily influence decision criteria and outcomes. Suitable suppliers capable of meeting performance criteria are central to successful Blockchain Technology (BT) implementation. Numerous qualitative factors influence blockchain adoption within organizations, particularly in the communication between retailers and suppliers via Blockchain, where qualitative uncertainties abound. This study aims to develop a robust system within a probabilistic and fuzzy framework to integrate DMs’ judgments amidst uncertainty effectively. Leveraging the Bayesian best-worst method (BWM), optimal weights for evaluating supplier criteria are determined. This method employs Markov-chain Monte Carlo (MCMC) to calculate the probability of preferring one criterion over another, facilitating confidence level elucidation between criterion pairs and enhancing criteria rankings. Supplier ranking is performed using the Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method. The efficacy of the proposed approach is demonstrated through a case study utilizing real data from the railway supply chain. Results indicate the model’s effectiveness in optimizing supplier selection and enhancing supply chain performance.</div></div>","PeriodicalId":101186,"journal":{"name":"Supply Chain Analytics","volume":"9 ","pages":"Article 100100"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supply Chain Analytics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949863524000438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Supplier selection is a complex Multi-Criteria Decision-Making (MCDM) problem where decision-maker (DM) preferences heavily influence decision criteria and outcomes. Suitable suppliers capable of meeting performance criteria are central to successful Blockchain Technology (BT) implementation. Numerous qualitative factors influence blockchain adoption within organizations, particularly in the communication between retailers and suppliers via Blockchain, where qualitative uncertainties abound. This study aims to develop a robust system within a probabilistic and fuzzy framework to integrate DMs’ judgments amidst uncertainty effectively. Leveraging the Bayesian best-worst method (BWM), optimal weights for evaluating supplier criteria are determined. This method employs Markov-chain Monte Carlo (MCMC) to calculate the probability of preferring one criterion over another, facilitating confidence level elucidation between criterion pairs and enhancing criteria rankings. Supplier ranking is performed using the Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method. The efficacy of the proposed approach is demonstrated through a case study utilizing real data from the railway supply chain. Results indicate the model’s effectiveness in optimizing supplier selection and enhancing supply chain performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A game theoretic model for dual supply chains with green and non-green products and bi-directional free-riding and carbon policy A robotic process automation model for order-handling optimization in supply chain management An investigation of foreign affiliates and supply chain productivity in the European Union industrial sectors A Bayesian best-worst approach with blockchain integration for optimizing supply chain efficiency through supplier selection A data-driven machine learning model for forecasting delivery positions in logistics for workforce planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1