Kaili Wang , Pengcheng Liu , Mingzhe Wang , Tianran Wei , Jitao Lu , Xingling Zhao , Zaiyong Jiang , Zhimin Yuan , Xijun Liu , Jia He
{"title":"Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance","authors":"Kaili Wang , Pengcheng Liu , Mingzhe Wang , Tianran Wei , Jitao Lu , Xingling Zhao , Zaiyong Jiang , Zhimin Yuan , Xijun Liu , Jia He","doi":"10.1016/j.cclet.2024.110532","DOIUrl":null,"url":null,"abstract":"<div><div>Unraveling the essence of electronic structure effected by d-d orbital coupling of transition metal and methanol oxidation reaction (MOR) performance can fundamentally guide high efficient catalyst design. Herein, density functional theory (DFT) calculations were performed at first to study the d–d orbital interaction of metallic PtPdCu, revealing that the incorporation of Pd and Cu atoms into Pt system can enhance d-d electron interaction <em>via</em> capturing antibonding orbital electrons of Pt to fill the surrounding Pd and Cu atoms. Under the theoretical guidance, PtPdCu medium entropy alloy aerogels (PtPdCu MEAAs) catalysts have been designed and systematically screened for MOR under acid, alkaline and neutral electrolyte. Furthermore, DFT calculation and <em>in-situ</em> fourier transform infrared spectroscopy analysis indicate that PtPdCu MEAAs follow the direct pathway <em>via</em> formate as the reactive intermediate to be directly oxidized to CO<sub>2</sub>. For practical direct methanol fuel cells (DMFCs), the PtPdCu MEAAs-integrated ultra-thin catalyst layer (4∼5 μm thickness) as anode exhibits higher peak power density of 35 mW/cm<sup>2</sup> than commercial Pt/C of 20 mW/cm<sup>2</sup> (∼40 μm thickness) under the similar noble metal loading and an impressive stability retention at a 50-mA/cm<sup>2</sup> constant current for 10 h. This work clearly proves that optimizing the intermediate adsorption capacity <em>via</em> d-d orbital coupling is an effective strategy to design highly efficient catalysts for DMFCs.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 4","pages":"Article 110532"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724010507","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Unraveling the essence of electronic structure effected by d-d orbital coupling of transition metal and methanol oxidation reaction (MOR) performance can fundamentally guide high efficient catalyst design. Herein, density functional theory (DFT) calculations were performed at first to study the d–d orbital interaction of metallic PtPdCu, revealing that the incorporation of Pd and Cu atoms into Pt system can enhance d-d electron interaction via capturing antibonding orbital electrons of Pt to fill the surrounding Pd and Cu atoms. Under the theoretical guidance, PtPdCu medium entropy alloy aerogels (PtPdCu MEAAs) catalysts have been designed and systematically screened for MOR under acid, alkaline and neutral electrolyte. Furthermore, DFT calculation and in-situ fourier transform infrared spectroscopy analysis indicate that PtPdCu MEAAs follow the direct pathway via formate as the reactive intermediate to be directly oxidized to CO2. For practical direct methanol fuel cells (DMFCs), the PtPdCu MEAAs-integrated ultra-thin catalyst layer (4∼5 μm thickness) as anode exhibits higher peak power density of 35 mW/cm2 than commercial Pt/C of 20 mW/cm2 (∼40 μm thickness) under the similar noble metal loading and an impressive stability retention at a 50-mA/cm2 constant current for 10 h. This work clearly proves that optimizing the intermediate adsorption capacity via d-d orbital coupling is an effective strategy to design highly efficient catalysts for DMFCs.
期刊介绍:
Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.