Modulation of MnO2-BiOCl photocatalyst immobilized in polyvinyl alcohol hydrogel for reusable photodegradation of Rhodamine B and Ibuprofen under visible light
Sin Ling Chiam , C.P. Leo , Swee-Yong Pung , Wei Lun Ang
{"title":"Modulation of MnO2-BiOCl photocatalyst immobilized in polyvinyl alcohol hydrogel for reusable photodegradation of Rhodamine B and Ibuprofen under visible light","authors":"Sin Ling Chiam , C.P. Leo , Swee-Yong Pung , Wei Lun Ang","doi":"10.1016/j.solidstatesciences.2025.107831","DOIUrl":null,"url":null,"abstract":"<div><div>The presence of pharmaceutical drugs and organic dyes in water poses significant concerns for both human health and the environment. While photocatalysts offer an effective means of pollutant degradation without generating secondary waste, they are commonly limited by charge recombination and small particle size for large-scale practical use. In this study, BiOCl was chemically deposited on MnO<sub>2</sub> and immobilization in the polyvinyl alcohol hydrogel thin films for the photodegradation of Rhodamine B and Ibuprofen under visible light. The plate-like BiOCl successfully grown between nanoflowers of MnO₂, as proven by scanning and transmission electron microscopy images. Energy dispersive X-ray analysis and Fourier-transform infrared spectroscopy results affirmed the chemical characteristics of BiOCl and MnO₂, while X-ray diffraction patterns confirmed the crystallinity of BiOCl and MnO₂. Optimizing the BiOCl loading, 2:1 in ratio with MnO<sub>2</sub> yielded a PVA thin film with high photocatalytic activity. 99 % of Rhodamine and 97 % of Ibuprofen were degraded in 60 min and 90 min respectively. Even after five recycles, the catalyst maintained over 80 % efficiency for RhB and 70 % for Ibuprofen. The degradation was primarily driven by •O<sub>2</sub><sup>−</sup> and e<sup>−</sup> generated by the MnO<sub>2</sub> and BiOCl composite. This study highlights the potential of BiOCl-MnO₂/PVA hydrogel composites for sustainable, reusable, and efficient water treatment applications.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"160 ","pages":"Article 107831"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255825000093","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of pharmaceutical drugs and organic dyes in water poses significant concerns for both human health and the environment. While photocatalysts offer an effective means of pollutant degradation without generating secondary waste, they are commonly limited by charge recombination and small particle size for large-scale practical use. In this study, BiOCl was chemically deposited on MnO2 and immobilization in the polyvinyl alcohol hydrogel thin films for the photodegradation of Rhodamine B and Ibuprofen under visible light. The plate-like BiOCl successfully grown between nanoflowers of MnO₂, as proven by scanning and transmission electron microscopy images. Energy dispersive X-ray analysis and Fourier-transform infrared spectroscopy results affirmed the chemical characteristics of BiOCl and MnO₂, while X-ray diffraction patterns confirmed the crystallinity of BiOCl and MnO₂. Optimizing the BiOCl loading, 2:1 in ratio with MnO2 yielded a PVA thin film with high photocatalytic activity. 99 % of Rhodamine and 97 % of Ibuprofen were degraded in 60 min and 90 min respectively. Even after five recycles, the catalyst maintained over 80 % efficiency for RhB and 70 % for Ibuprofen. The degradation was primarily driven by •O2− and e− generated by the MnO2 and BiOCl composite. This study highlights the potential of BiOCl-MnO₂/PVA hydrogel composites for sustainable, reusable, and efficient water treatment applications.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.