Combining camera traps and artificial intelligence for monitoring visitor frequencies in natural areas: Lessons from a case study in the Belgian Ardenne
Quentin Guidosse , Johanna Breyne , Anthony Cioppa , Kevin Maréchal , Ulysse Rubens , Marc Van Droogenbroeck , Marc Dufrêne
{"title":"Combining camera traps and artificial intelligence for monitoring visitor frequencies in natural areas: Lessons from a case study in the Belgian Ardenne","authors":"Quentin Guidosse , Johanna Breyne , Anthony Cioppa , Kevin Maréchal , Ulysse Rubens , Marc Van Droogenbroeck , Marc Dufrêne","doi":"10.1016/j.jort.2025.100856","DOIUrl":null,"url":null,"abstract":"<div><div>Visitor monitoring is essential for ecosystem management and the evaluation of ecosystem services. However, in natural areas without entrance fees and with scattered entry and exit points, this task can be challenging, costly, and labor-intensive. Camera traps can provide both quantitative and qualitative data on visitor frequencies, profiles, and activities in these remote areas. Manual image analysis, however, is time-consuming when dealing with large datasets. In this study, we analyzed more than 700,000 images collected by nineteen cameras over a year on hiking trails in the Belgian Ardenne. Consistent with recent studies, our research demonstrates that the use of a convolutional neural network (CNN) can achieve accurate and promising results in detecting and classifying people and non-people (dogs, bicycles). Nevertheless, automatic processing entails the risk of multiple counts of the same individuals, depending on camera’s position, technical characteristics, and the time intervals between photos. This paper discusses the limitations and potential improvements of the monitoring methodology, from camera setup to data analysis. It concludes by the added value of this approach for the management of natural areas.</div></div><div><h3>Management implications</h3><div>The integration of AI with camera traps offers a practical and scalable solution for natural areas management by providing accurate data on visitor frequencies and behaviors. This approach can help site managers optimize visitor flows, reduce the impact of human activities on vulnerable ecosystems, and address user conflicts. It also supports sustainable tourism by informing decisions related to infrastructure, conservation priorities, and visitor access. Additionally, the flexibility of this method allows for site-specific adaptations, ensuring that monitoring efforts are aligned with management objectives while maintaining data transparency and privacy protection.</div></div>","PeriodicalId":46931,"journal":{"name":"Journal of Outdoor Recreation and Tourism-Research Planning and Management","volume":"49 ","pages":"Article 100856"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Outdoor Recreation and Tourism-Research Planning and Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213078025000027","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0
Abstract
Visitor monitoring is essential for ecosystem management and the evaluation of ecosystem services. However, in natural areas without entrance fees and with scattered entry and exit points, this task can be challenging, costly, and labor-intensive. Camera traps can provide both quantitative and qualitative data on visitor frequencies, profiles, and activities in these remote areas. Manual image analysis, however, is time-consuming when dealing with large datasets. In this study, we analyzed more than 700,000 images collected by nineteen cameras over a year on hiking trails in the Belgian Ardenne. Consistent with recent studies, our research demonstrates that the use of a convolutional neural network (CNN) can achieve accurate and promising results in detecting and classifying people and non-people (dogs, bicycles). Nevertheless, automatic processing entails the risk of multiple counts of the same individuals, depending on camera’s position, technical characteristics, and the time intervals between photos. This paper discusses the limitations and potential improvements of the monitoring methodology, from camera setup to data analysis. It concludes by the added value of this approach for the management of natural areas.
Management implications
The integration of AI with camera traps offers a practical and scalable solution for natural areas management by providing accurate data on visitor frequencies and behaviors. This approach can help site managers optimize visitor flows, reduce the impact of human activities on vulnerable ecosystems, and address user conflicts. It also supports sustainable tourism by informing decisions related to infrastructure, conservation priorities, and visitor access. Additionally, the flexibility of this method allows for site-specific adaptations, ensuring that monitoring efforts are aligned with management objectives while maintaining data transparency and privacy protection.
期刊介绍:
Journal of Outdoor Recreation and Tourism offers a dedicated outlet for research relevant to social sciences and natural resources. The journal publishes peer reviewed original research on all aspects of outdoor recreation planning and management, covering the entire spectrum of settings from wilderness to urban outdoor recreation opportunities. It also focuses on new products and findings in nature based tourism and park management. JORT is an interdisciplinary and transdisciplinary journal, articles may focus on any aspect of theory, method, or concept of outdoor recreation research, planning or management, and interdisciplinary work is especially welcome, and may be of a theoretical and/or a case study nature. Depending on the topic of investigation, articles may be positioned within one academic discipline, or draw from several disciplines in an integrative manner, with overarching relevance to social sciences and natural resources. JORT is international in scope and attracts scholars from all reaches of the world to facilitate the exchange of ideas. As such, the journal enhances understanding of scientific knowledge, empirical results, and practitioners'' needs. Therefore in JORT each article is accompanied by an executive summary, written by the editors or authors, highlighting the planning and management relevant aspects of the article.