GaN Nanopowder synthesis via nitridation: Fabrication and characterization of GaN thin Films for UV detection applications

Mahdi Hajimazdarani , Peyman Yaghoubizadeh , Ali Jafari , Ali Kenarsari Moghadam , Mojtaba Hajimazdarani , Mohammad Javad Eshraghi
{"title":"GaN Nanopowder synthesis via nitridation: Fabrication and characterization of GaN thin Films for UV detection applications","authors":"Mahdi Hajimazdarani ,&nbsp;Peyman Yaghoubizadeh ,&nbsp;Ali Jafari ,&nbsp;Ali Kenarsari Moghadam ,&nbsp;Mojtaba Hajimazdarani ,&nbsp;Mohammad Javad Eshraghi","doi":"10.1016/j.sintl.2025.100329","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel method for synthesizing gallium nitride nanoparticles via nitridation and their subsequent deposition onto silicon substrates using electron beam evaporation for UV detection applications. The structural and optical properties of the resulting gallium nitride thin films were thoroughly characterized. X-ray diffraction confirmed that the synthesized powder has a wurtzite crystal structure, while the deposited thin film has an amorphous structure. Field emission scanning electron microscopy revealed a uniform layer with an approximate thickness of 150 nm. Energy dispersive spectroscopy confirmed that the stoichiometric ratio of gallium to nitrogen was maintained throughout the coating process. Additionally, ultraviolet diffuse reflectance spectroscopy measurements revealed a bandgap of 3.37 eV for the deposited thin film. Additionally, gold electrodes were deposited on the gallium nitride thin film, and the optical sensor's detection properties were evaluated, demonstrating a sensitivity of 133.6 along with rise and fall times of 18 ms and 15 ms, respectively. These findings underscore the potential of gallium nitride-based materials for advanced optical sensor applications in various fields.</div></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":"6 ","pages":"Article 100329"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266635112500004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel method for synthesizing gallium nitride nanoparticles via nitridation and their subsequent deposition onto silicon substrates using electron beam evaporation for UV detection applications. The structural and optical properties of the resulting gallium nitride thin films were thoroughly characterized. X-ray diffraction confirmed that the synthesized powder has a wurtzite crystal structure, while the deposited thin film has an amorphous structure. Field emission scanning electron microscopy revealed a uniform layer with an approximate thickness of 150 nm. Energy dispersive spectroscopy confirmed that the stoichiometric ratio of gallium to nitrogen was maintained throughout the coating process. Additionally, ultraviolet diffuse reflectance spectroscopy measurements revealed a bandgap of 3.37 eV for the deposited thin film. Additionally, gold electrodes were deposited on the gallium nitride thin film, and the optical sensor's detection properties were evaluated, demonstrating a sensitivity of 133.6 along with rise and fall times of 18 ms and 15 ms, respectively. These findings underscore the potential of gallium nitride-based materials for advanced optical sensor applications in various fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
期刊最新文献
Design of a high accuracy wideband current sensing system by tunneling magnetoresistive device with digital parametric equalizer Synthesis and application of Schiff base as a dual-mode chemosensor for optical determination of aluminium ion content in water samples A smart glove to evaluate Parkinson's disease by flexible piezoelectric and inertial sensors Current advancements in microneedle technology for therapeutic and biomedical applications Lighting the way forward: The bright future of photonic integrated circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1