Assessing the vulnerability of wintering habitats for the red-listed Asian Houbara (Chlamydotis macqueenii) using climate models and human impact assessments
Gulzaman William , Zafeer Saqib , Abdul Qadir , Nisha Naeem , Mehrban Ali Brohi , Asim Kamran , Afia Rafique
{"title":"Assessing the vulnerability of wintering habitats for the red-listed Asian Houbara (Chlamydotis macqueenii) using climate models and human impact assessments","authors":"Gulzaman William , Zafeer Saqib , Abdul Qadir , Nisha Naeem , Mehrban Ali Brohi , Asim Kamran , Afia Rafique","doi":"10.1016/j.avrs.2024.100221","DOIUrl":null,"url":null,"abstract":"<div><div>The Asian Houbara (<em>Chlamydotis macqueenii</em>), a vulnerable species, is under significant threat from habitat degradation and anthropogenic pressures in Pakistan's arid landscapes. This study addresses the urgent need for conservation by identifying critical habitats, analyzing the influence of environmental and human factors on species distribution, and projecting future habitat shifts under climate change scenarios. Using the MaxEnt model, which achieves a robust predictive accuracy (AUC = 0.854), we mapped current and future habitat suitability under Shared Socioeconomic Pathways (SSP126, SSP370, SSP585) for the years 2040 and 2070. Presently, the suitable habitat extends over 217,082 km<sup>2</sup>, with 52,751 km<sup>2</sup> classified as highly suitable. Key environmental drivers, identified via the Jackknife test, revealed that annual mean temperature (Bio1) and slope play a dominant role in determining habitat suitability. Projections show significant habitat degradation; however, under SSP585, highly suitable areas are expected to expand by up to 24.92% by 2070. Despite this increase, vast areas remain unsuitable, posing serious risks to population sustainability. Moreover, only 2115 km<sup>2</sup> of highly suitable habitat currently falls within protected zones, highlighting a critical conservation shortfall. These findings highlight the imperative for immediate, targeted conservation efforts to secure the species' future in Pakistan's desert ecosystems.</div></div>","PeriodicalId":51311,"journal":{"name":"Avian Research","volume":"16 1","pages":"Article 100221"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avian Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2053716624000641","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORNITHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Asian Houbara (Chlamydotis macqueenii), a vulnerable species, is under significant threat from habitat degradation and anthropogenic pressures in Pakistan's arid landscapes. This study addresses the urgent need for conservation by identifying critical habitats, analyzing the influence of environmental and human factors on species distribution, and projecting future habitat shifts under climate change scenarios. Using the MaxEnt model, which achieves a robust predictive accuracy (AUC = 0.854), we mapped current and future habitat suitability under Shared Socioeconomic Pathways (SSP126, SSP370, SSP585) for the years 2040 and 2070. Presently, the suitable habitat extends over 217,082 km2, with 52,751 km2 classified as highly suitable. Key environmental drivers, identified via the Jackknife test, revealed that annual mean temperature (Bio1) and slope play a dominant role in determining habitat suitability. Projections show significant habitat degradation; however, under SSP585, highly suitable areas are expected to expand by up to 24.92% by 2070. Despite this increase, vast areas remain unsuitable, posing serious risks to population sustainability. Moreover, only 2115 km2 of highly suitable habitat currently falls within protected zones, highlighting a critical conservation shortfall. These findings highlight the imperative for immediate, targeted conservation efforts to secure the species' future in Pakistan's desert ecosystems.
期刊介绍:
Avian Research is an open access, peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world. It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists. As an open access journal, Avian Research provides a unique opportunity to publish high quality contents that will be internationally accessible to any reader at no cost.