Realizing superior high-temperature mechanical properties in Laser Powder Bed Fusion Al-Mn-Mg-Sc-Zr alloy via dual-nanoprecipitation strengthening

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: A Pub Date : 2025-02-01 DOI:10.1016/j.msea.2024.147660
Changyi Yang , Shufan Wu , Zhenhua Li , Wentao Jiang , Chaoli Ma , Wenlong Xiao
{"title":"Realizing superior high-temperature mechanical properties in Laser Powder Bed Fusion Al-Mn-Mg-Sc-Zr alloy via dual-nanoprecipitation strengthening","authors":"Changyi Yang ,&nbsp;Shufan Wu ,&nbsp;Zhenhua Li ,&nbsp;Wentao Jiang ,&nbsp;Chaoli Ma ,&nbsp;Wenlong Xiao","doi":"10.1016/j.msea.2024.147660","DOIUrl":null,"url":null,"abstract":"<div><div>Laser Powder Bed Fusion (LPBF) additive manufacturing technology offers a route for developing high-performance Al alloys. This study utilized LPBF to fabricate Al-Mn-Mg-Sc-Zr alloys, focusing on the high-temperature mechanical properties and fracture behavior. Results indicate that the alloy with bimodal structure exhibits an excellent strength-ductility balance from room temperature to 250 °C, with a yield strength of 512 MPa and an elongation of 12.3 % at room temperature, and a yield strength of 370 MPa and an elongation of 12.0 % at 250 °C. Even at 300 °C, this alloy retains a satisfactory yield strength of 269 MPa. The exceptional high-temperature performance results from the Al<sub>3</sub>Sc and Al<sub>6</sub>Mn dual-nanoprecipitation strengthening. However, high temperature ductility dip occurs at temperatures above 300 °C due to the coarsening of Al<sub>6</sub>Mn precipitates in the fine-equiaxed grain regions. This study provides valuable insights for designing the microstructure of heat-resistant Al alloys used in additive manufacturing.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"922 ","pages":"Article 147660"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509324015910","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Laser Powder Bed Fusion (LPBF) additive manufacturing technology offers a route for developing high-performance Al alloys. This study utilized LPBF to fabricate Al-Mn-Mg-Sc-Zr alloys, focusing on the high-temperature mechanical properties and fracture behavior. Results indicate that the alloy with bimodal structure exhibits an excellent strength-ductility balance from room temperature to 250 °C, with a yield strength of 512 MPa and an elongation of 12.3 % at room temperature, and a yield strength of 370 MPa and an elongation of 12.0 % at 250 °C. Even at 300 °C, this alloy retains a satisfactory yield strength of 269 MPa. The exceptional high-temperature performance results from the Al3Sc and Al6Mn dual-nanoprecipitation strengthening. However, high temperature ductility dip occurs at temperatures above 300 °C due to the coarsening of Al6Mn precipitates in the fine-equiaxed grain regions. This study provides valuable insights for designing the microstructure of heat-resistant Al alloys used in additive manufacturing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
期刊最新文献
Enhanced dynamic mechanical properties of face-centered cubic CoCrFeNi-based high entropy alloy via coherent L12 nanoprecipitates Revealing the role of heterogeneous microstructure on fatigue crack propagation behaviors in T74 Al-Zn-Mg-Cu alloys Interstitials enable enhanced mechanical and anti-corrosion properties of a non-equiatomic quinary high-entropy alloy Shock compression and spallation of TiZrHf refractory multi-principal element alloy Concurrently improved strength-ductility synergy and strain-hardenability in metastable face-centered cubic high-entropy alloys through C-doping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1